These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21078143)
1. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D BMC Struct Biol; 2010 Nov; 10():40. PubMed ID: 21078143 [TBL] [Abstract][Full Text] [Related]
2. Optimal design of protein docking potentials: efficiency and limitations. Tobi D; Bahar I Proteins; 2006 Mar; 62(4):970-81. PubMed ID: 16385562 [TBL] [Abstract][Full Text] [Related]
3. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking. Sasse A; de Vries SJ; Schindler CE; de BeauchĂȘne IC; Zacharias M PLoS One; 2017; 12(1):e0170625. PubMed ID: 28118389 [TBL] [Abstract][Full Text] [Related]
4. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys. Hou Q; Lensink MF; Heringa J; Feenstra KA PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787 [TBL] [Abstract][Full Text] [Related]
5. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Liang S; Meroueh SO; Wang G; Qiu C; Zhou Y Proteins; 2009 May; 75(2):397-403. PubMed ID: 18831053 [TBL] [Abstract][Full Text] [Related]
6. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking. Liu S; Vakser IA BMC Bioinformatics; 2011 Jul; 12():280. PubMed ID: 21745398 [TBL] [Abstract][Full Text] [Related]
7. DARS (Decoys As the Reference State) potentials for protein-protein docking. Chuang GY; Kozakov D; Brenke R; Comeau SR; Vajda S Biophys J; 2008 Nov; 95(9):4217-27. PubMed ID: 18676649 [TBL] [Abstract][Full Text] [Related]
8. Shape complementarity of protein-protein complexes at multiple resolutions. Zhang Q; Sanner M; Olson AJ Proteins; 2009 May; 75(2):453-67. PubMed ID: 18837463 [TBL] [Abstract][Full Text] [Related]
9. Combination of scoring functions improves discrimination in protein-protein docking. Murphy J; Gatchell DW; Prasad JC; Vajda S Proteins; 2003 Dec; 53(4):840-54. PubMed ID: 14635126 [TBL] [Abstract][Full Text] [Related]
10. Efficient comprehensive scoring of docked protein complexes using probabilistic support vector machines. Martin O; Schomburg D Proteins; 2008 Mar; 70(4):1367-78. PubMed ID: 17894343 [TBL] [Abstract][Full Text] [Related]
11. Protein-protein docking with multiple residue conformations and residue substitutions. Lorber DM; Udo MK; Shoichet BK Protein Sci; 2002 Jun; 11(6):1393-408. PubMed ID: 12021438 [TBL] [Abstract][Full Text] [Related]
12. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential. Liu Z; Dominy BN; Shakhnovich EI J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009 [TBL] [Abstract][Full Text] [Related]
13. A continuum model for protein-protein interactions: application to the docking problem. Jackson RM; Sternberg MJ J Mol Biol; 1995 Jul; 250(2):258-75. PubMed ID: 7541840 [TBL] [Abstract][Full Text] [Related]
14. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. Jackson RM; Gabb HA; Sternberg MJ J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726 [TBL] [Abstract][Full Text] [Related]
15. A probabilistic fragment-based protein structure prediction algorithm. Simoncini D; Berenger F; Shrestha R; Zhang KY PLoS One; 2012; 7(7):e38799. PubMed ID: 22829868 [TBL] [Abstract][Full Text] [Related]
16. Integrating atom-based and residue-based scoring functions for protein-protein docking. Vreven T; Hwang H; Weng Z Protein Sci; 2011 Sep; 20(9):1576-86. PubMed ID: 21739500 [TBL] [Abstract][Full Text] [Related]
17. Novel nonlinear knowledge-based mean force potentials based on machine learning. Dong Q; Zhou S IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):476-86. PubMed ID: 20820079 [TBL] [Abstract][Full Text] [Related]
18. Improving ranking of models for protein complexes with side chain modeling and atomic potentials. Viswanath S; Ravikant DV; Elber R Proteins; 2013 Apr; 81(4):592-606. PubMed ID: 23180599 [TBL] [Abstract][Full Text] [Related]
19. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Comeau SR; Gatchell DW; Vajda S; Camacho CJ Bioinformatics; 2004 Jan; 20(1):45-50. PubMed ID: 14693807 [TBL] [Abstract][Full Text] [Related]
20. DOCKGROUND system of databases for protein recognition studies: unbound structures for docking. Gao Y; Douguet D; Tovchigrechko A; Vakser IA Proteins; 2007 Dec; 69(4):845-51. PubMed ID: 17803215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]