These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21078289)

  • 1. Applications of phasor plots to in vitro protein studies.
    James NG; Ross JA; Stefl M; Jameson DM
    Anal Biochem; 2011 Mar; 410(1):70-6. PubMed ID: 21078289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of phasors to in vitro time-resolved fluorescence measurements.
    Stefl M; James NG; Ross JA; Jameson DM
    Anal Biochem; 2011 Mar; 410(1):62-9. PubMed ID: 21078290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide.
    Steer BA; Merrill AR
    Biochemistry; 1997 Mar; 36(10):3037-46. PubMed ID: 9062135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase.
    Mersol JV; Steel DG; Gafni A
    Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phasor approaches simplify the analysis of tryptophan fluorescence data in protein denaturation studies.
    Bader AN; Visser NV; van Amerongen H; Visser AJWG
    Methods Appl Fluoresc; 2014 Nov; 2(4):045001. PubMed ID: 29148477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions.
    Žoldák G; Jancura D; Sedlák E
    Protein Sci; 2017 Jun; 26(6):1236-1239. PubMed ID: 28370732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Phasor Plot: A Universal Circle to Advance Fluorescence Lifetime Analysis and Interpretation.
    Malacrida L; Ranjit S; Jameson DM; Gratton E
    Annu Rev Biophys; 2021 May; 50():575-593. PubMed ID: 33957055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the pathways of proteins unfolding induced by urea and guanidine hydrochloride: molten globule state and aggregates.
    Povarova OI; Kuznetsova IM; Turoverov KK
    PLoS One; 2010 Nov; 5(11):e15035. PubMed ID: 21152408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy.
    Togashi DM; Ryder AG; O'Shaughnessy D
    J Fluoresc; 2010 Mar; 20(2):441-52. PubMed ID: 19911258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence lifetime distributions report on protein destabilisation in quenching experiments.
    Bódis E; Raics K; Nyitrai M; Majer Z; Lukács A
    J Photochem Photobiol B; 2013 Dec; 129():108-14. PubMed ID: 24211296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible dissociation and unfolding of dimeric creatine kinase isoenzyme MM in guanidine hydrochloride and urea.
    Couthon F; Clottes E; Ebel C; Vial C
    Eur J Biochem; 1995 Nov; 234(1):160-70. PubMed ID: 8529636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues.
    Reshetnyak YK; Koshevnik Y; Burstein EA
    Biophys J; 2001 Sep; 81(3):1735-58. PubMed ID: 11509384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopy.
    Royer CA
    Methods Mol Biol; 1995; 40():65-89. PubMed ID: 7633532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica).
    Datta D; J Swamy M
    J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of heterogeneous fluorescence decays in proteins. Using fluorescence lifetime of 8-anilino-1-naphthalenesulfonate to probe apomyoglobin unfolding at equilibrium.
    Wang G; Gao Y; Geng ML
    Biochim Biophys Acta; 2006 Jul; 1760(7):1125-37. PubMed ID: 16730413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9.
    Kuhlman B; Luisi DL; Evans PA; Raleigh DP
    J Mol Biol; 1998 Dec; 284(5):1661-70. PubMed ID: 9878377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A.
    Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA
    Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids.
    Goldberg JM; Speight LC; Fegley MW; Petersson EJ
    J Am Chem Soc; 2012 Apr; 134(14):6088-91. PubMed ID: 22471784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phasor Representation of Monomer-Excimer Kinetics: General Results and Application to Pyrene.
    Martelo L; Fedorov A; Berberan-Santos MN
    J Phys Chem B; 2015 Dec; 119(48):15023-9. PubMed ID: 26549817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.