BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21078593)

  • 1. Electrophysiological evidence for distinct vagal pathways mediating CCK-evoked motor effects in the proximal versus distal stomach.
    Okano-Matsumoto S; McRoberts JA; Taché Y; Adelson DW
    J Physiol; 2011 Jan; 589(Pt 2):371-93. PubMed ID: 21078593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gastric vagal efferent inhibition evoked by intravenous CRF is unrelated to simultaneously recorded vagal afferent activity in urethane-anesthetized rats.
    Adelson DW; Kosoyan HP; Wang Y; Steinberg JZ; Taché Y
    J Neurophysiol; 2007 Apr; 97(4):3004-14. PubMed ID: 17314242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vagal efferent fibre responses to gastric and oesophageal mechanical and chemical stimuli in the ferret.
    Partosoedarso ER; Blackshaw LA
    J Auton Nerv Syst; 1997 Oct; 66(3):169-78. PubMed ID: 9406122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exogenous cholecystokinin-8 reduces vagal efferent nerve activity in rats through CCK(A) receptors.
    Bucinskaite V; Kurosawa M; Lundeberg T
    Br J Pharmacol; 2000 Apr; 129(8):1649-54. PubMed ID: 10780970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre.
    Blackshaw LA; Grundy D
    J Auton Nerv Syst; 1990 Dec; 31(3):191-201. PubMed ID: 2084184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastro-oesophageal afferent and serotonergic inputs to vagal efferent neurones.
    Blackshaw LA
    J Auton Nerv Syst; 1994 Oct; 49(2):93-103. PubMed ID: 7806770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrifugal gastric vagal afferent unit activities: another source of gastric "efferent" control.
    Wei JY; Adelson DW; Taché Y; Go VL
    J Auton Nerv Syst; 1995 Apr; 52(2-3):83-97. PubMed ID: 7615902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral bombesin decreases gastric vagal efferent activity in part through vagal pathways in rats.
    Yoshida-Yoneda E; Taché Y; Kosoyan HP; Wei JY
    Am J Physiol; 1994 Jun; 266(6 Pt 2):R1868-75. PubMed ID: 8024041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of DQ-2511 on neutral activity in afferent and efferent loops of gastric vago-vagal reflex pathways in the rat.
    Niijima A; Hatanaka S; Furuhama K
    J Auton Pharmacol; 1996 Feb; 16(1):49-53. PubMed ID: 8736431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat.
    Glatzle J; Wang Y; Adelson DW; Kalogeris TJ; Zittel TT; Tso P; Wei JY; Raybould HE
    J Physiol; 2003 Jul; 550(Pt 2):657-64. PubMed ID: 12766241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of beta-alanine on the vagal efferent and afferent excitatory responses of the stomach to stimulation of vagal trunk in cats.
    Aoki S; Kurahashi K; Iwamoto M; Kawaguchi A; Jino H; Oikawa H
    Life Sci; 1992; 50(20):1511-8. PubMed ID: 1349713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of single vagal efferent fibre discharge by gastrointestinal afferents in the rat.
    Davison JS; Grundy D
    J Physiol; 1978 Nov; 284():69-82. PubMed ID: 731576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats.
    Raybould HE; Taché Y
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G242-6. PubMed ID: 3136661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat.
    Zhang X; Fogel R
    Auton Neurosci; 2003 Jan; 103(1-2):19-37. PubMed ID: 12531396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources of anterior gastric vagal efferent discharge in rats: an electrophysiological study.
    Wei JY; Taché Y; Kruger L
    J Auton Nerv Syst; 1992 Jan; 37(1):29-37. PubMed ID: 1593092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of gastric mechanoreceptor discharge by cholecystokinin in the rat.
    Grundy D; Bagaev V; Hillsley K
    Am J Physiol; 1995 Feb; 268(2 Pt 1):G355-60. PubMed ID: 7864132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R303-8. PubMed ID: 8048636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1993 Oct; 265(4 Pt 2):R872-6. PubMed ID: 8238459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of vagal efferent fibre discharge by mechanoreceptors in the stomach, duodenum and colon of the ferret.
    Grundy D; Salih AA; Scratcherd T
    J Physiol; 1981; 319():43-52. PubMed ID: 7320920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of postprandial function in the proximal gastrointestinal tract. Role of CCK and sensory pathways.
    Raybould HE; Lloyd KC
    Ann N Y Acad Sci; 1994 Mar; 713():143-56. PubMed ID: 8185155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.