These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21078820)

  • 1. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi.
    Wang X; Hsueh YP; Li W; Floyd A; Skalsky R; Heitman J
    Genes Dev; 2010 Nov; 24(22):2566-82. PubMed ID: 21078820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex-induced silencing operates during opposite-sex and unisexual reproduction in Cryptococcus neoformans.
    Wang X; Darwiche S; Heitman J
    Genetics; 2013 Apr; 193(4):1163-74. PubMed ID: 23378067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans.
    Wang X; Wang P; Sun S; Darwiche S; Idnurm A; Heitman J
    PLoS Genet; 2012; 8(8):e1002885. PubMed ID: 22916030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the role of RNA silencing components in Cryptococcus neoformans.
    Janbon G; Maeng S; Yang DH; Ko YJ; Jung KW; Moyrand F; Floyd A; Heitman J; Bahn YS
    Fungal Genet Biol; 2010 Dec; 47(12):1070-80. PubMed ID: 21067947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Non-Dicer RNase III and Four Other Novel Factors Required for RNAi-Mediated Transposon Suppression in the Human Pathogenic Yeast
    Burke JE; Longhurst AD; Natarajan P; Rao B; Liu J; Sales-Lee J; Mortensen Y; Moresco JJ; Diedrich JK; Yates JR; Madhani HD
    G3 (Bethesda); 2019 Jul; 9(7):2235-2244. PubMed ID: 31092606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniparental nuclear inheritance following bisexual mating in fungi.
    Yadav V; Sun S; Heitman J
    Elife; 2021 Aug; 10():. PubMed ID: 34338631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ago1 and dcr1, two core components of the RNA interference pathway, functionally diverge from rdp1 in regulating cell cycle events in Schizosaccharomyces pombe.
    Carmichael JB; Provost P; Ekwall K; Hobman TC
    Mol Biol Cell; 2004 Mar; 15(3):1425-35. PubMed ID: 14699070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans.
    Yadav V; Mohan R; Sun S; Heitman J
    Genetics; 2024 Mar; 226(3):. PubMed ID: 38279937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a complete URA5 deletion strain of a human pathogenic yeast Cryptococcus neoformans.
    Drivinya A; Shimizu K; Takeo K
    Nihon Ishinkin Gakkai Zasshi; 2004; 45(1):1-6. PubMed ID: 14765094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation.
    Edman JC; Kwon-Chung KJ
    Mol Cell Biol; 1990 Sep; 10(9):4538-44. PubMed ID: 2201894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dicer promotes Atg8 expression through RNAi independent mechanism in Cryptococcus neoformans.
    Feng W; Yang M; Li X; Wei D
    FEMS Yeast Res; 2021 Jul; 21(5):. PubMed ID: 34185085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans.
    Jiang N; Yang Y; Janbon G; Pan J; Zhu X
    PLoS One; 2012; 7(12):e52734. PubMed ID: 23300755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diversity of retrotransposons in the yeast Cryptococcus neoformans.
    Goodwin TJ; Poulter RT
    Yeast; 2001 Jun; 18(9):865-80. PubMed ID: 11427969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The karyopherin Sal3 is required for nuclear import of the core RNA interference pathway protein Rdp1.
    Park J; Freitag SI; Young PG; Hobman TC
    Traffic; 2012 Apr; 13(4):520-31. PubMed ID: 22268381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans.
    Stanton BC; Giles SS; Staudt MW; Kruzel EK; Hull CM
    PLoS Genet; 2010 Feb; 6(2):e1000860. PubMed ID: 20195516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in
    Ianiri G; Fang YF; Dahlmann TA; Clancey SA; Janbon G; Kück U; Heitman J
    Genetics; 2020 Mar; 214(3):635-649. PubMed ID: 31882399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and genetic analysis of URA5 transformants of Cryptococcus neoformans.
    Varma A; Edman JC; Kwon-Chung KJ
    Infect Immun; 1992 Mar; 60(3):1101-8. PubMed ID: 1541525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical and environmental isolates of Cryptococcus gattii from Australia that retain sexual fecundity.
    Campbell LT; Fraser JA; Nichols CB; Dietrich FS; Carter D; Heitman J
    Eukaryot Cell; 2005 Aug; 4(8):1410-9. PubMed ID: 16087746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum.
    Son H; Park AR; Lim JY; Shin C; Lee YW
    PLoS Genet; 2017 Feb; 13(2):e1006595. PubMed ID: 28146558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans.
    Feretzaki M; Heitman J
    PLoS Genet; 2013; 9(8):e1003688. PubMed ID: 23966871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.