These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 21078824)
1. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. Li J; Kristiansen KA; Hansen BG; Halkier BA J Exp Bot; 2011 Jan; 62(3):1337-46. PubMed ID: 21078824 [TBL] [Abstract][Full Text] [Related]
2. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Hansen BG; Kliebenstein DJ; Halkier BA Plant J; 2007 Jun; 50(5):902-10. PubMed ID: 17461789 [TBL] [Abstract][Full Text] [Related]
3. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Li J; Hansen BG; Ober JA; Kliebenstein DJ; Halkier BA Plant Physiol; 2008 Nov; 148(3):1721-33. PubMed ID: 18799661 [TBL] [Abstract][Full Text] [Related]
4. A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. He Y; Mawhinney TP; Preuss ML; Schroeder AC; Chen B; Abraham L; Jez JM; Chen S Plant J; 2009 Nov; 60(4):679-90. PubMed ID: 19674406 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Levy M; Wang Q; Kaspi R; Parrella MP; Abel S Plant J; 2005 Jul; 43(1):79-96. PubMed ID: 15960618 [TBL] [Abstract][Full Text] [Related]
6. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358 [TBL] [Abstract][Full Text] [Related]
7. Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis. Albinsky D; Sawada Y; Kuwahara A; Nagano M; Hirai A; Saito K; Hirai MY Amino Acids; 2010 Oct; 39(4):1067-75. PubMed ID: 20623150 [TBL] [Abstract][Full Text] [Related]
8. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Yatusevich R; Mugford SG; Matthewman C; Gigolashvili T; Frerigmann H; Delaney S; Koprivova A; Flügge UI; Kopriva S Plant J; 2010 Apr; 62(1):1-11. PubMed ID: 20042022 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
10. Glucosinolate biosynthetic genes in Brassica rapa. Wang H; Wu J; Sun S; Liu B; Cheng F; Sun R; Wang X Gene; 2011 Nov; 487(2):135-42. PubMed ID: 21835231 [TBL] [Abstract][Full Text] [Related]
11. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis. Grubb CD; Zipp BJ; Kopycki J; Schubert M; Quint M; Lim EK; Bowles DJ; Pedras MS; Abel S Plant J; 2014 Jul; 79(1):92-105. PubMed ID: 24779768 [TBL] [Abstract][Full Text] [Related]
13. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Malitsky S; Blum E; Less H; Venger I; Elbaz M; Morin S; Eshed Y; Aharoni A Plant Physiol; 2008 Dec; 148(4):2021-49. PubMed ID: 18829985 [TBL] [Abstract][Full Text] [Related]
14. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. Nintemann SJ; Hunziker P; Andersen TG; Schulz A; Burow M; Halkier BA Physiol Plant; 2018 Jun; 163(2):138-154. PubMed ID: 29194649 [TBL] [Abstract][Full Text] [Related]
15. Expression pattern of the glucosinolate side chain biosynthetic genes MAM1 and MAM3 of Arabidopsis thaliana in different organs and developmental stages. Redovniković IR; Textor S; Lisnić B; Gershenzon J Plant Physiol Biochem; 2012 Apr; 53():77-83. PubMed ID: 22336876 [TBL] [Abstract][Full Text] [Related]
16. Bioinformatic analysis of molecular network of glucosinolate biosynthesis. Chen Y; Yan X; Chen S Comput Biol Chem; 2011 Feb; 35(1):10-8. PubMed ID: 21247808 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. Zang YX; Kim HU; Kim JA; Lim MH; Jin M; Lee SC; Kwon SJ; Lee SI; Hong JK; Park TH; Mun JH; Seol YJ; Hong SB; Park BS FEBS J; 2009 Jul; 276(13):3559-74. PubMed ID: 19456863 [TBL] [Abstract][Full Text] [Related]
18. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Kuśnierczyk A; Winge P; Jørstad TS; Troczyńska J; Rossiter JT; Bones AM Plant Cell Environ; 2008 Aug; 31(8):1097-115. PubMed ID: 18433442 [TBL] [Abstract][Full Text] [Related]
19. Glucosinolate metabolism and its control. Grubb CD; Abel S Trends Plant Sci; 2006 Feb; 11(2):89-100. PubMed ID: 16406306 [TBL] [Abstract][Full Text] [Related]