These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21079282)

  • 1. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron.
    Nie FL; Zheng YF; Wei SC; Hu C; Yang G
    Biomed Mater; 2010 Dec; 5(6):065015. PubMed ID: 21079282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.
    Nie FL; Wang SG; Wang YB; Wei SC; Zheng YF
    Dent Mater; 2011 Jul; 27(7):677-83. PubMed ID: 21514955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.
    Huang T; Cheng J; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution.
    Wang SG; Shen CB; Long K; Zhang T; Wang FH; Zhang ZD
    J Phys Chem B; 2006 Jan; 110(1):377-82. PubMed ID: 16471545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses.
    Gu X; Zheng Y; Zhong S; Xi T; Wang J; Wang W
    Biomaterials; 2010 Feb; 31(6):1093-103. PubMed ID: 19939446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies.
    Moravej M; Purnama A; Fiset M; Couet J; Mantovani D
    Acta Biomater; 2010 May; 6(5):1843-51. PubMed ID: 20080213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.
    Huang T; Cheng Y; Zheng Y
    Colloids Surf B Biointerfaces; 2016 Jun; 142():20-29. PubMed ID: 26925722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control.
    Nie FL; Zheng YF; Wei SC; Wang DS; Yu ZT; Salimgareeva GK; Polyakov AV; Valiev RZ
    J Biomed Mater Res A; 2013 Jun; 101(6):1694-707. PubMed ID: 23184756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application.
    Chen H; Zhang E; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():201-6. PubMed ID: 24268250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique mechanical properties of nanostructured metals.
    Tsuji N
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3765-70. PubMed ID: 18047054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application.
    Xu XX; Nie FL; Wang YB; Zhang JX; Zheng W; Li L; Zheng YF
    Acta Biomater; 2012 Feb; 8(2):886-96. PubMed ID: 22040688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrosion resistance of nanostructured titanium.
    Garbacz H; Pisarek M; Kurzydłowski KJ
    Biomol Eng; 2007 Nov; 24(5):559-63. PubMed ID: 17889602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites.
    Cheng J; Huang T; Zheng YF
    J Biomed Mater Res A; 2014 Jul; 102(7):2277-87. PubMed ID: 23894098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering.
    Cheng J; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):485-97. PubMed ID: 23359385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and electrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution.
    Wang SG; Shen CB; Long K; Yang HY; Wang FH; Zhang ZD
    J Phys Chem B; 2005 Feb; 109(7):2499-503. PubMed ID: 16851248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro biocompatibility of equal channel angular processed (ECAP) titanium.
    Kim TN; Balakrishnan A; Lee BC; Kim WS; Smetana K; Park JK; Panigrahi BB
    Biomed Mater; 2007 Sep; 2(3):S117-20. PubMed ID: 18458454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.