These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 21079285)

  • 21. Torque-stiffness-controlled dynamic walking with central pattern generators.
    Huang Y; Vanderborght B; Van Ham R; Wang Q
    Biol Cybern; 2014 Dec; 108(6):803-23. PubMed ID: 25128320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of running with compliant curved legs.
    Jun JY; Clark JE
    Bioinspir Biomim; 2015 Jul; 10(4):046008. PubMed ID: 26151098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaling of dynamics in the earliest stages of walking.
    Holt KG; Saltzman E; Ho CL; Ulrich BD
    Phys Ther; 2007 Nov; 87(11):1458-67. PubMed ID: 17878431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does a crouched leg posture enhance running stability and robustness?
    Blum Y; Birn-Jeffery A; Daley MA; Seyfarth A
    J Theor Biol; 2011 Jul; 281(1):97-106. PubMed ID: 21569779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective leg stiffness in running.
    Blum Y; Lipfert SW; Seyfarth A
    J Biomech; 2009 Oct; 42(14):2400-5. PubMed ID: 19647825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities.
    Geyer H; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):263-73. PubMed ID: 20378480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.
    Verdaasdonk BW; Koopman HF; van der Helm FC
    Biol Cybern; 2009 Jul; 101(1):49-61. PubMed ID: 19504121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-dimensional sagittal plane model of normal human walking.
    Srinivasan S; Raptis IA; Westervelt ER
    J Biomech Eng; 2008 Oct; 130(5):051017. PubMed ID: 19045524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leg-adjustment strategies for stable running in three dimensions.
    Peuker F; Maufroy C; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-inspired step-climbing in a hexapod robot.
    Chou YC; Yu WS; Huang KJ; Lin PC
    Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An upper-body can improve the stability and efficiency of passive dynamic walking.
    Chyou T; Liddell GF; Paulin MG
    J Theor Biol; 2011 Sep; 285(1):126-35. PubMed ID: 21740916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix).
    Andrada E; Nyakatura JA; Bergmann F; Blickhan R
    J Exp Biol; 2013 Oct; 216(Pt 20):3906-16. PubMed ID: 23868846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of human walking with powered orthosis for designing practical assistive device.
    Uchiyama Y; Nagai C; Obinata G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4816-9. PubMed ID: 23367005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion.
    Moritz CT; Farley CT
    J Exp Biol; 2005 Mar; 208(Pt 5):939-49. PubMed ID: 15755892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.