BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21079543)

  • 1. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads.
    Li XF; Liu ZD; Dai LY; Zhong GB; Zang WP
    Spine (Phila Pa 1976); 2011 Apr; 36(7):521-8. PubMed ID: 21079543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of an induced rotation model with the clinical categorisation of scoliotic deformity--a possible platform for prediction of scoliosis progression.
    Heidari B; Fitzpatrick D; McCormack D; Synnott K
    Stud Health Technol Inform; 2006; 123():169-75. PubMed ID: 17108422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary function and spinal characteristics: their relationships in persons with idiopathic and postpoliomyelitic scoliosis.
    Lin MC; Liaw MY; Chen WJ; Cheng PT; Wong AM; Chiou WK
    Arch Phys Med Rehabil; 2001 Mar; 82(3):335-41. PubMed ID: 11245755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodynamic responses of adolescent idiopathic scoliosis exposed to vibration.
    Jia S; Lin L; Yang H; Xie J; Liu Z; Zhang T; Fan J; Han L
    Med Biol Eng Comput; 2023 Jan; 61(1):271-284. PubMed ID: 36385615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the scoliotic spine under different loading conditions.
    Cheng FH; Shih SL; Chou WK; Liu CL; Sung WH; Chen CS
    Biomed Mater Eng; 2010; 20(5):251-9. PubMed ID: 21084737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing pelvis dynamics in adolescent with idiopathic scoliosis.
    Pasha S; Sangole AP; Aubin CE; Parent S; Mac-Thiong JM; Labelle H
    Spine (Phila Pa 1976); 2010 Aug; 35(17):E820-6. PubMed ID: 20628326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of rib cage on the dynamic response stability of the scoliotic spine].
    Yang H; Lin L; Zhang S; Tian T; Li Y; Han L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):769-776. PubMed ID: 31631625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A porcine model for progressive thoracic scoliosis.
    Schwab F; Patel A; Lafage V; Farcy JP
    Spine (Phila Pa 1976); 2009 May; 34(11):E397-404. PubMed ID: 19444053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    Eur Spine J; 2004 Feb; 13(1):83-90. PubMed ID: 14730437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the change in three dimensional deformity for idiopathic scoliosis using axially loaded MRI.
    Little JP; Izatt MT; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):415-21. PubMed ID: 22226470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study.
    Kouwenhoven JW; Smit TH; van der Veen AJ; Kingma I; van Dieën JH; Castelein RM
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2545-50. PubMed ID: 17978652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling and modal analysis of the human spine vibration configuration.
    Guo LX; Zhang YM; Zhang M
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2987-90. PubMed ID: 21693412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of the conservative treatment in idiopathic scoliotic curves in surgical "grey-area".
    Aulisa L; Lupparelli S; Pola E; Aulisa AG; Mastantuoni G; Pitta L
    Stud Health Technol Inform; 2002; 91():412-8. PubMed ID: 15457767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics.
    Xu M; Yang J; Lieberman I; Haddas R
    Comput Biol Med; 2017 May; 84():53-58. PubMed ID: 28342408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping.
    Guo LX; Teo EC; Lee KK; Zhang QH
    Spine (Phila Pa 1976); 2005 Mar; 30(6):631-7. PubMed ID: 15770177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.
    Little JP; Pearcy MJ; Izatt MT; Boom K; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():220-8. PubMed ID: 26658078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.