BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21079543)

  • 21. Influence prediction of injury and vibration on adjacent components of spine using finite element methods.
    Guo LX; Teo EC
    J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the rib cage deformity in children with 10 degrees-20 degrees of Cobb angle late onset idiopathic scoliosis, using rib-vertebra angles--aetiologic implications.
    Grivas TB; Samelis P; Chadziargiropoulos T; Polyzois B
    Stud Health Technol Inform; 2002; 91():20-4. PubMed ID: 15457688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of anteroposterior shifting of trunk mass centroid on vibrational configuration of human spine.
    Guo LX; Zhang M; Wang ZW; Zhang YM; Wen BC; Li JL
    Comput Biol Med; 2008 Jan; 38(1):146-51. PubMed ID: 17931615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Etiology of the so-called "idiopathic scoliosis". Biomechanical explanation of spine deformity. Two groups of development of scoliosis. New rehabilitation treatment; possibility of prophylactics.
    Karski T
    Stud Health Technol Inform; 2002; 91():37-46. PubMed ID: 15457691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration.
    Kong WZ; Goel VK
    Spine (Phila Pa 1976); 2003 Sep; 28(17):1961-7. PubMed ID: 12973142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Finite element analysis of adolescent idiopathic scoliosis of PUMC II d2 surgical treatment with different fusion levels].
    Wang XS; Wu ZH; Sun WF; Yan JZ; Xing ZJ; Shen WX; Qiu GX
    Zhonghua Yi Xue Za Zhi; 2010 Apr; 90(15):1039-43. PubMed ID: 20646523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine.
    Lenke LG; Edwards CC; Bridwell KH
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S199-207. PubMed ID: 14560193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of Harrington instrumentation spondylodesis on scoliotic thoracic deformity. A retrospective 5-year analysis].
    Götze C; Götze HG; Halm H
    Z Orthop Ihre Grenzgeb; 1999; 137(5):423-9. PubMed ID: 10549120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of lumbar curvature and rotation on forward flexibility in idiopathic scoliosis.
    Kao FC; Lai PL; Chang CH; Tsai TT; Fu TS; Niu CC; Chen LH; Chen WJ
    Biomed J; 2014; 37(2):78-83. PubMed ID: 24732662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Low Bone Mineral Status on Biomechanical Characteristics in Idiopathic Scoliotic Spinal Deformity.
    Song XX; Jin LY; Li XF; Qian L; Shen HX; Liu ZD; Yu BW
    World Neurosurg; 2018 Feb; 110():e321-e329. PubMed ID: 29133001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinal cord intramedullary pressure in thoracic scoliotic deformity: a cadaveric study.
    Pettigrew DB; Fessler RD; Farley CW; Al-Nafi S; Holtz JR; Wiebracht ND; Look AC; Kuntz C
    Spine (Phila Pa 1976); 2015 Feb; 40(4):E242-7. PubMed ID: 25423307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical modelling of spinal growth modulation for the study of adolescent scoliotic deformities: a feasibility study.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    Stud Health Technol Inform; 2002; 88():373-7. PubMed ID: 15456064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of the rib cage on the static and dynamic stability responses of the scoliotic spine.
    Jia S; Lin L; Yang H; Fan J; Zhang S; Han L
    Sci Rep; 2020 Oct; 10(1):16916. PubMed ID: 33037307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexibility in the scoliotic spine: three-dimensional analysis.
    Matsumoto T; Kitahara H; Minami S; Takahashi K; Yamagata M; Moriya H; Tamaki T
    J Spinal Disord; 1997 Apr; 10(2):125-31. PubMed ID: 9113611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The sagittal curvature of spine in idiopathic scoliosis--its morphological features and the correlation among sagittal and frontal curvatures and rotation of apical vertebra].
    Inoue K
    Nihon Seikeigeka Gakkai Zasshi; 1985 May; 59(5):505-16. PubMed ID: 4031577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The feasibility of modal testing for measurement of the dynamic characteristics of goat vertebral motion segments.
    van Engelen SJ; van der Veen AJ; de Boer A; Ellenbroek MH; Smit TH; van Royen BJ; van Dieën JH
    J Biomech; 2011 May; 44(8):1478-83. PubMed ID: 21450293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element method-based study for spinal vibration characteristics of the scoliosis and kyphosis lumbar spine to whole-body vibration under a compressive follower preload.
    Li P; Fu R; Yang X; Wang K; Chen H
    Comput Methods Biomech Biomed Engin; 2024 Mar; ():1-10. PubMed ID: 38532635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models.
    Guo LX; Teo EC
    Proc Inst Mech Eng H; 2005 Jul; 219(4):277-84. PubMed ID: 16050218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.