These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21079830)

  • 1. Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps.
    Liu Q; Zhao Z; Lin Y; Guo P; Li S; Pan D; Ji X
    Chem Commun (Camb); 2011 Jan; 47(3):964-6. PubMed ID: 21079830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alloyed semiconductor nanocrystals with broad tunable band gaps.
    Pan D; Weng D; Wang X; Xiao Q; Chen W; Xu C; Yang Z; Lu Y
    Chem Commun (Camb); 2009 Jul; (28):4221-3. PubMed ID: 19585027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alloyed (ZnSe)(x)(CuInSe2)(1-x) and CuInSe(x)S(2-x) nanocrystals with a monophase zinc blende structure over the entire composition range.
    Li S; Zhao Z; Liu Q; Huang L; Wang G; Pan D; Zhang H; He X
    Inorg Chem; 2011 Dec; 50(23):11958-64. PubMed ID: 21942215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition.
    Pan D; An L; Sun Z; Hou W; Yang Y; Yang Z; Lu Y
    J Am Chem Soc; 2008 Apr; 130(17):5620-1. PubMed ID: 18396869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application.
    Huang WC; Tseng CH; Chang SH; Tuan HY; Chiang CC; Lyu LM; Huang MH
    Langmuir; 2012 Jun; 28(22):8496-501. PubMed ID: 22607372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alloyed (ZnS)x(CuInS2)(1-x) semiconductor nanorods: synthesis, bandgap tuning and photocatalytic properties.
    Ye C; Regulacio MD; Lim SH; Xu QH; Han MY
    Chemistry; 2012 Sep; 18(36):11258-63. PubMed ID: 22865784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition- and band-gap-tunable synthesis of wurtzite-derived Cu₂ZnSn(S(1-x)Se(x))₄ nanocrystals: theoretical and experimental insights.
    Fan FJ; Wu L; Gong M; Liu G; Wang YX; Yu SH; Chen S; Wang LW; Gong XG
    ACS Nano; 2013 Feb; 7(2):1454-63. PubMed ID: 23350525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One solvent, one pot and free capping ligands: Synthesis of alloyed multipod-branched Cd(x)Zn(1-)(x)S nanocrystals.
    He X; Gao L
    J Colloid Interface Sci; 2010 Sep; 349(1):159-65. PubMed ID: 20570272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band-gap tunable (Cu2Sn)(x/3)Zn(1-x)S nanoparticles for solar cells.
    Dai P; Shen X; Lin Z; Feng Z; Xu H; Zhan J
    Chem Commun (Camb); 2010 Aug; 46(31):5749-51. PubMed ID: 20582379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and shape control of CuInS(2) nanoparticles.
    Kruszynska M; Borchert H; Parisi J; Kolny-Olesiak J
    J Am Chem Soc; 2010 Nov; 132(45):15976-86. PubMed ID: 20958030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions.
    Park J; Song M; Jung WM; Lee WY; Kim H; Kim Y; Hwang C; Shim IW
    Dalton Trans; 2013 Aug; 42(29):10545-50. PubMed ID: 23759949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doping Cu in semiconductor nanocrystals: some old and some new physical insights.
    Srivastava BB; Jana S; Pradhan N
    J Am Chem Soc; 2011 Feb; 133(4):1007-1015. PubMed ID: 21186798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of CuInS2-ZnS alloyed nanocubes with high luminescence.
    Tang X; Cheng W; Choo ES; Xue J
    Chem Commun (Camb); 2011 May; 47(18):5217-9. PubMed ID: 21431201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.
    Tang A; Hu Z; Yin Z; Ye H; Yang C; Teng F
    Dalton Trans; 2015 May; 44(19):9251-9. PubMed ID: 25910188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of wurtzite-zincblende Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals: insight into the structural selection of quaternary and ternary compounds influenced by binary nuclei.
    Li Y; Han Q; Kim TW; Shi W
    Nanoscale; 2014 Apr; 6(7):3777-85. PubMed ID: 24573321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of shape-controlled monodisperse wurtzite CuIn(x)Ga(1-x)S2 semiconductor nanocrystals with tunable band gap.
    Wang YH; Zhang X; Bao N; Lin B; Gupta A
    J Am Chem Soc; 2011 Jul; 133(29):11072-5. PubMed ID: 21702462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect.
    Uehara M; Watanabe K; Tajiri Y; Nakamura H; Maeda H
    J Chem Phys; 2008 Oct; 129(13):134709. PubMed ID: 19045118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods.
    Connor ST; Hsu CM; Weil BD; Aloni S; Cui Y
    J Am Chem Soc; 2009 Apr; 131(13):4962-6. PubMed ID: 19281233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.