BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21080412)

  • 1. Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors.
    Dias RB; Ribeiro JA; Sebastião AM
    Hippocampus; 2012 Feb; 22(2):276-91. PubMed ID: 21080412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase.
    Banke TG; Bowie D; Lee H; Huganir RL; Schousboe A; Traynelis SF
    J Neurosci; 2000 Jan; 20(1):89-102. PubMed ID: 10627585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine A
    Kawamura M; Sekino Y
    Purinergic Signal; 2023 Dec; 19(4):623-632. PubMed ID: 36074226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of TrkB receptor translocation to lipid rafts by adenosine A(2A) receptors and its functional implications for BDNF-induced regulation of synaptic plasticity.
    Assaife-Lopes N; Sousa VC; Pereira DB; Ribeiro JA; Sebastião AM
    Purinergic Signal; 2014; 10(2):251-67. PubMed ID: 24271058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling.
    Sahin B; Galdi S; Hendrick J; Greene RW; Snyder GL; Bibb JA
    Brain Res; 2007 Jan; 1129(1):1-14. PubMed ID: 17157277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced AMPA receptor-mediated neurotransmission on CA1 pyramidal neurons during status epilepticus.
    Joshi S; Rajasekaran K; Sun H; Williamson J; Kapur J
    Neurobiol Dis; 2017 Jul; 103():45-53. PubMed ID: 28377128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity.
    Wang D; Govindaiah G; Liu R; De Arcangelis V; Cox CL; Xiang YK
    FASEB J; 2010 Sep; 24(9):3511-21. PubMed ID: 20395454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism.
    Liu M; Shi R; Hwang H; Han KS; Wong MH; Ren X; Lewis LD; Brown EN; Xu W
    J Neurophysiol; 2018 Oct; 120(4):1578-1586. PubMed ID: 30067114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II.
    Poncer JC; Esteban JA; Malinow R
    J Neurosci; 2002 Jun; 22(11):4406-11. PubMed ID: 12040047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors.
    Higley MJ; Sabatini BL
    Nat Neurosci; 2010 Aug; 13(8):958-66. PubMed ID: 20601948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.
    Tao W; Chen Q; Zhou W; Wang Y; Wang L; Zhang Z
    J Biol Chem; 2014 Aug; 289(32):22196-204. PubMed ID: 24966334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity.
    Diering GH; Gustina AS; Huganir RL
    Neuron; 2014 Nov; 84(4):790-805. PubMed ID: 25451194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII.
    Hardingham N; Wright N; Dachtler J; Fox K
    Neuron; 2008 Dec; 60(5):861-74. PubMed ID: 19081380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow AMPA receptors in hippocampal principal cells.
    Pampaloni NP; Riva I; Carbone AL; Plested AJR
    Cell Rep; 2021 Aug; 36(5):109496. PubMed ID: 34348150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strictly regulated agonist-dependent activation of AMPA-R is the key characteristic of TAK-653 for robust synaptic responses and cognitive improvement.
    Suzuki A; Kunugi A; Tajima Y; Suzuki N; Suzuki M; Toyofuku M; Kuno H; Sogabe S; Kosugi Y; Awasaki Y; Kaku T; Kimura H
    Sci Rep; 2021 Jul; 11(1):14532. PubMed ID: 34267258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons.
    Hernández-González O; Hernández-Flores T; Prieto GA; Pérez-Burgos A; Arias-García MA; Galarraga E; Bargas J
    Purinergic Signal; 2014; 10(2):269-81. PubMed ID: 24014158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM.
    Holst BD; Vanderklish PW; Krushel LA; Zhou W; Langdon RB; McWhirter JR; Edelman GM; Crossin KL
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2597-602. PubMed ID: 9482932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic maternal L-Glu intake during gestation and/or lactation on oxidative stress markers, AMPA Glu1 receptor and adenosine A
    Tejero A; León-Navarro DA; Martín M
    Purinergic Signal; 2024 Apr; 20(2):181-192. PubMed ID: 37458955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor complexes.
    Kang MG; Nuriya M; Guo Y; Martindale KD; Lee DZ; Huganir RL
    J Biol Chem; 2012 Aug; 287(34):28632-45. PubMed ID: 22753414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A-kinase anchoring protein 79/150 coordinates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor sensitization in sensory neurons.
    Zhang Y; Jeske NA
    Mol Pain; 2023; 19():17448069231222406. PubMed ID: 38073552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.