These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 21080641)
1. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Zheng ST; Bu JT; Li Y; Wu T; Zuo F; Feng P; Bu X J Am Chem Soc; 2010 Dec; 132(48):17062-4. PubMed ID: 21080641 [TBL] [Abstract][Full Text] [Related]
2. Multi-Modular Design of Stable Pore-Space-Partitioned Metal-Organic Frameworks for Gas Separation Applications. Chen Y; Yang H; Wang W; Li X; Wang Y; Hong AN; Bu X; Feng P Small; 2023 Nov; 19(45):e2303540. PubMed ID: 37420325 [TBL] [Abstract][Full Text] [Related]
3. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Chen SQ; Zhai QG; Li SN; Jiang YC; Hu MC Inorg Chem; 2015 Jan; 54(1):10-2. PubMed ID: 25494676 [TBL] [Abstract][Full Text] [Related]
4. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. Jin Y; Voss BA; Jin A; Long H; Noble RD; Zhang W J Am Chem Soc; 2011 May; 133(17):6650-8. PubMed ID: 21473590 [TBL] [Abstract][Full Text] [Related]
5. Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal-organic framework. Alsmail NH; Suyetin M; Yan Y; Cabot R; Krap CP; Lü J; Easun TL; Bichoutskaia E; Lewis W; Blake AJ; Schröder M Chemistry; 2014 Jun; 20(24):7317-24. PubMed ID: 24806046 [TBL] [Abstract][Full Text] [Related]
6. Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. Chen S; Zhang J; Wu T; Feng P; Bu X J Am Chem Soc; 2009 Nov; 131(44):16027-9. PubMed ID: 19842698 [TBL] [Abstract][Full Text] [Related]
7. Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties. Kumar R; Suresh VM; Maji TK; Rao CN Chem Commun (Camb); 2014 Feb; 50(16):2015-7. PubMed ID: 24412955 [TBL] [Abstract][Full Text] [Related]
8. Highly porous 4,8-connected metal-organic frameworks: synthesis, characterization, and hydrogen uptake. Mihalcik DJ; Zhang T; Ma L; Lin W Inorg Chem; 2012 Feb; 51(4):2503-8. PubMed ID: 22224580 [TBL] [Abstract][Full Text] [Related]
9. Tuning the topology and functionality of metal-organic frameworks by ligand design. Zhao D; Timmons DJ; Yuan D; Zhou HC Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015 [TBL] [Abstract][Full Text] [Related]
10. Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Babarao R; Dai S; Jiang DE Langmuir; 2011 Apr; 27(7):3451-60. PubMed ID: 21351767 [TBL] [Abstract][Full Text] [Related]
11. Heterometallic Organic Frameworks Built from Trinuclear Indium and Cuprous Halide Clusters: Ligand-Oriented Assemblies and Iodine Adsorption Behavior. Liu JH; Qi YJ; Zhao D; Li HH; Zheng ST Inorg Chem; 2019 Jan; 58(1):516-523. PubMed ID: 30547590 [TBL] [Abstract][Full Text] [Related]
12. Highly porous and robust 4,8-connected metal-organic frameworks for hydrogen storage. Ma L; Mihalcik DJ; Lin W J Am Chem Soc; 2009 Apr; 131(13):4610-2. PubMed ID: 19290636 [TBL] [Abstract][Full Text] [Related]
13. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. Zhao X; Bu X; Zhai QG; Tran H; Feng P J Am Chem Soc; 2015 Feb; 137(4):1396-9. PubMed ID: 25621414 [TBL] [Abstract][Full Text] [Related]
14. Modifying cage structures in metal-organic polyhedral frameworks for H2 storage. Yan Y; Blake AJ; Lewis W; Barnett SA; Dailly A; Champness NR; Schröder M Chemistry; 2011 Sep; 17(40):11162-70. PubMed ID: 21898615 [TBL] [Abstract][Full Text] [Related]
15. General and simple approach for control cage and cylindrical mesopores, and thermal/hydrothermal stable frameworks. El-Safty SA; Mizukami F; Hanaoka T J Phys Chem B; 2005 May; 109(19):9255-64. PubMed ID: 16852106 [TBL] [Abstract][Full Text] [Related]
16. A homochiral metal-organic porous material for enantioselective separation and catalysis. Seo JS; Whang D; Lee H; Jun SI; Oh J; Jeon YJ; Kim K Nature; 2000 Apr; 404(6781):982-6. PubMed ID: 10801124 [TBL] [Abstract][Full Text] [Related]
17. Selective CO2 adsorption by a triazacyclononane-bridged microporous metal-organic framework. Ortiz G; Brandès S; Rousselin Y; Guilard R Chemistry; 2011 Jun; 17(24):6689-95. PubMed ID: 21538607 [TBL] [Abstract][Full Text] [Related]
18. Site Partition: Turning One Site into Two for Adsorbing CO2. Tian Z; Dai S; Jiang DE J Phys Chem Lett; 2016 Jul; 7(13):2568-72. PubMed ID: 27320252 [TBL] [Abstract][Full Text] [Related]
19. Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal-organic frameworks. Babarao R; Jiang J; Sandler SI Langmuir; 2009 May; 25(9):5239-47. PubMed ID: 19099354 [TBL] [Abstract][Full Text] [Related]
20. Structures and H2 adsorption properties of porous scandium metal-organic frameworks. Ibarra IA; Lin X; Yang S; Blake AJ; Walker GS; Barnett SA; Allan DR; Champness NR; Hubberstey P; Schröder M Chemistry; 2010 Dec; 16(46):13671-9. PubMed ID: 20960440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]