These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 21080652)

  • 1. Graphene nanoribbon composites.
    Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA
    ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy derived by combining graphene and carbon nanotubes as nanofillers in composites.
    Yavari F; Chen L; Zandiatashbar A; Yu Z; Koratkar N
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3165-9. PubMed ID: 22849081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelasticity in carbon nanotube composites.
    Suhr J; Koratkar N; Keblinski P; Ajayan P
    Nat Mater; 2005 Feb; 4(2):134-7. PubMed ID: 15640807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unzipped multiwalled carbon nanotube oxide/multiwalled carbon nanotube hybrids for polymer reinforcement.
    Fan J; Shi Z; Tian M; Wang J; Yin J
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5956-65. PubMed ID: 23121120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.
    Hou Y; Tang J; Zhang H; Qian C; Feng Y; Liu J
    ACS Nano; 2009 May; 3(5):1057-62. PubMed ID: 19397293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites.
    Blake R; Gun'ko YK; Coleman J; Cadek M; Fonseca A; Nagy JB; Blau WJ
    J Am Chem Soc; 2004 Aug; 126(33):10226-7. PubMed ID: 15315418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.
    Yuan W; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2065-73. PubMed ID: 22432973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dramatic increase in fatigue life in hierarchical graphene composites.
    Yavari F; Rafiee MA; Rafiee J; Yu ZZ; Koratkar N
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2738-43. PubMed ID: 20863061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.
    Bekyarova E; Thostenson ET; Yu A; Kim H; Gao J; Tang J; Hahn HT; Chou TW; Itkis ME; Haddon RC
    Langmuir; 2007 Mar; 23(7):3970-4. PubMed ID: 17326671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites.
    Zeng Y; Ci L; Carey BJ; Vajtai R; Ajayan PM
    ACS Nano; 2010 Nov; 4(11):6798-804. PubMed ID: 20958076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective reinforcement in carbon nanotube-polymer composites.
    Wang W; Ciselli P; Kuznetsov E; Peijs T; Barber AH
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1613-26. PubMed ID: 18192168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.
    Morelos-Gómez A; Vega-Díaz SM; González VJ; Tristán-López F; Cruz-Silva R; Fujisawa K; Muramatsu H; Hayashi T; Mi X; Shi Y; Sakamoto H; Khoerunnisa F; Kaneko K; Sumpter BG; Kim YA; Meunier V; Endo M; Muñoz-Sandoval E; Terrones M
    ACS Nano; 2012 Mar; 6(3):2261-72. PubMed ID: 22360783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing.
    Yang YK; Yu LJ; Peng RG; Huang YL; He CE; Liu HY; Wang XB; Xie XL; Mai YW
    Nanotechnology; 2012 Jun; 23(22):225701. PubMed ID: 22572720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites.
    Byrne MT; McNamee WP; Gun'ko YK
    Nanotechnology; 2008 Oct; 19(41):415707. PubMed ID: 21832658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics study of the mechanical properties of graphene nanoribbon-embedded gold composites.
    Chien SK; Yang YT; Chen CK
    Nanoscale; 2011 Oct; 3(10):4307-13. PubMed ID: 21904757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes.
    Sinitskii A; Dimiev A; Kosynkin DV; Tour JM
    ACS Nano; 2010 Sep; 4(9):5405-13. PubMed ID: 20812742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomechanical properties of silica-coated multiwall carbon nanotubes-poly(methyl methacrylate) composites.
    Olek M; Kempa K; Jurga S; Giersig M
    Langmuir; 2005 Mar; 21(7):3146-52. PubMed ID: 15779997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.