These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21080665)

  • 1. Supramolecular self-assembly driven by electrostatic repulsion: The 1D aggregation of rubrene pentagons on Au111.
    Tomba G; Stengel M; Schneider WD; Baldereschi A; De Vita A
    ACS Nano; 2010 Dec; 4(12):7545-51. PubMed ID: 21080665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waals interaction.
    Abad E; Dappe YJ; Martínez JI; Flores F; Ortega J
    J Chem Phys; 2011 Jan; 134(4):044701. PubMed ID: 21280779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling energy level alignment at organic interfaces and density functional theory.
    Flores F; Ortega J; Vázquez H
    Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular aggregation of inorganic molecules at Au(111) electrodes under a strong ionic atmosphere.
    Fu YC; Su YZ; Wu DY; Yan JW; Xie ZX; Mao BW
    J Am Chem Soc; 2009 Oct; 131(41):14728-37. PubMed ID: 19778042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles of molecular assemblies leading to molecular nanostructures.
    Mali KS; De Feyter S
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120304. PubMed ID: 24000356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work.
    Müllen K; Rabe JP
    Acc Chem Res; 2008 Apr; 41(4):511-20. PubMed ID: 18410086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of oxide-supported metal clusters into ring-like structures.
    Meinander K; Nordlund K; Keinonen J
    Nanotechnology; 2013 Jan; 24(3):035602. PubMed ID: 23263704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale forces and their uses in self-assembly.
    Bishop KJ; Wilmer CE; Soh S; Grzybowski BA
    Small; 2009 Jul; 5(14):1600-30. PubMed ID: 19517482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures.
    Toyoda K; Hamada I; Lee K; Yanagisawa S; Morikawa Y
    J Chem Phys; 2010 Apr; 132(13):134703. PubMed ID: 20387950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular barrels from amphiphilic rigid-flexible macrocycles.
    Yang WY; Ahn JH; Yoo YS; Oh NK; Lee M
    Nat Mater; 2005 May; 4(5):399-402. PubMed ID: 15834413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C60 chain phases on ZnPc/Ag(111) surfaces: Supramolecular organization driven by competing interactions.
    Jin W; Liu Q; Dougherty DB; Cullen WG; Reutt-Robey JE; Weeks J; Robey SW
    J Chem Phys; 2015 Mar; 142(10):101910. PubMed ID: 25770499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic frameworks with functional pores for recognition of small molecules.
    Chen B; Xiang S; Qian G
    Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling intermolecular interactions of physisorbed organic molecules using pair potential calculations.
    Kröger I; Stadtmüller B; Wagner C; Weiss C; Temirov R; Tautz FS; Kumpf C
    J Chem Phys; 2011 Dec; 135(23):234703. PubMed ID: 22191896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of electrostatic fields on molecular electronic structure: insights for interfacial charge transfer.
    Monti OL; Steele MP
    Phys Chem Chem Phys; 2010 Oct; 12(39):12390-400. PubMed ID: 20714606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of van der Waals interactions in surface-supported supramolecular networks.
    Nguyen MT; Pignedoli CA; Treier M; Fasel R; Passerone D
    Phys Chem Chem Phys; 2010 Jan; 12(4):992-9. PubMed ID: 20066384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of C6H6 and C6H12 with noble metal surfaces: electronic level alignment and the origin of the interface dipole.
    Bagus PS; Hermann K; Wöll C
    J Chem Phys; 2005 Nov; 123(18):184109. PubMed ID: 16292901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.