These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 210807)
1. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. Koppenol WH; Vroonland CA; Braams R Biochim Biophys Acta; 1978 Sep; 503(3):499-508. PubMed ID: 210807 [TBL] [Abstract][Full Text] [Related]
2. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. Koppenol WH; Margoliash E J Biol Chem; 1982 Apr; 257(8):4426-37. PubMed ID: 6279635 [TBL] [Abstract][Full Text] [Related]
3. Steady state kinetics and binding of eukaryotic cytochromes c with yeast cytochrome c peroxidase. Kang CH; Ferguson-Miller S; Margoliash E J Biol Chem; 1977 Feb; 252(3):919-26. PubMed ID: 14138 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome c: ion binding and redox properties. Studies on ferri and ferro forms of horse, bovine, and tuna cytochrome c. Gopal D; Wilson GS; Earl RA; Cusanovich MA J Biol Chem; 1988 Aug; 263(24):11652-6. PubMed ID: 2841331 [TBL] [Abstract][Full Text] [Related]
5. Binding of horse heart cytochrome c to yeast porphyrin cytochrome c peroxidase: a fluorescence quenching study on the ionic strength dependence of the interaction. Vitello LB; Erman JE Arch Biochem Biophys; 1987 Nov; 258(2):621-9. PubMed ID: 2823719 [TBL] [Abstract][Full Text] [Related]
6. Redox protein electron-transfer mechanisms: electrostatic interactions as a determinant of reaction site in c-type cytochromes. Cheddar G; Meyer TE; Cusanovich MA; Stout CD; Tollin G Biochemistry; 1989 Jul; 28(15):6318-22. PubMed ID: 2551370 [TBL] [Abstract][Full Text] [Related]
7. Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c. Moench SJ; Shi TM; Satterlee JD Eur J Biochem; 1991 May; 197(3):631-41. PubMed ID: 1851480 [TBL] [Abstract][Full Text] [Related]
8. Is cytochrome c reactivity determined by dipole moment or by local charges? Koppenol WH Biophys Chem; 1983 Oct; 18(3):203-5. PubMed ID: 6315099 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of dithionite reduction of the heme nonapeptide of cytochrome c. Arif Kazmi S; Mills MA; Pitluk ZW; Scott RA J Inorg Biochem; 1985 May; 24(1):9-12. PubMed ID: 2989426 [TBL] [Abstract][Full Text] [Related]
10. The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase. Gilmour R; Goodhew CF; Pettigrew GW; Prazeres S; Moura JJ; Moura I Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):907-14. PubMed ID: 8010977 [TBL] [Abstract][Full Text] [Related]
11. Directional electron transfer in ruthenium-modified horse heart cytochrome c. Bechtold R; Kuehn C; Lepre C; Isied SS Nature; 1986 Jul 17-23; 322(6076):286-8. PubMed ID: 3016549 [TBL] [Abstract][Full Text] [Related]
12. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis. Eltis LD; Herbert RG; Barker PD; Mauk AG; Northrup SH Biochemistry; 1991 Apr; 30(15):3663-74. PubMed ID: 1849735 [TBL] [Abstract][Full Text] [Related]
13. Photoinduced electron-transfer reaction in a ternary system involving zinc cytochrome c and plastocyanin. Interplay of monopolar and dipolar electrostatic interactions between metalloproteins. Zhou JS; Kostić NM Biochemistry; 1992 Aug; 31(33):7543-50. PubMed ID: 1324717 [TBL] [Abstract][Full Text] [Related]
14. Comparison of protein structures in solution using local conformations derived from NMR data: application to cytochrome c. Kar L; Sherman SA; Johnson ME J Biomol Struct Dyn; 1994 Dec; 12(3):527-58. PubMed ID: 7727058 [TBL] [Abstract][Full Text] [Related]
15. Some electron-transfer reactions involving carbodi-imide-modified cytochrome c. Mathews AJ; Brittain T Biochem J; 1987 Apr; 243(2):379-84. PubMed ID: 2820377 [TBL] [Abstract][Full Text] [Related]
16. [Local structure of cytochrome c from horse heart in solution. Conformational analysis using data of two-dimensional nuclear Overhauser effect spectroscopy]. Andrianov AM; Akhrem AA Mol Biol (Mosk); 1991; 25(1):194-204. PubMed ID: 1654519 [TBL] [Abstract][Full Text] [Related]
17. The reaction domain on Rhodospirillum rubrum cytochrome c2 and horse cytochrome c for the Rhodospirillum rubrum cytochrome bc1 complex. Hall J; Kriaucionas A; Knaff D; Millett F J Biol Chem; 1987 Oct; 262(29):14005-9. PubMed ID: 2820990 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c. Seetharaman R; White SP; Rivera M Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180 [TBL] [Abstract][Full Text] [Related]
19. Effect of a molecular dipole on the ionic strength dependence of a biomolecular rate constant. Identification of the site of reaction. Koppenol WH Biophys J; 1980 Mar; 29(3):493-507. PubMed ID: 7295868 [TBL] [Abstract][Full Text] [Related]
20. Toward a multistep mechanism of cytochrome c reactivity. Answer to a comment. Fragata M; Bellemare F Biophys Chem; 1983 Oct; 18(3):207-10. PubMed ID: 6315100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]