These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2. Oninla VO; Breiden B; Babalola JO; Sandhoff K J Lipid Res; 2014 Dec; 55(12):2606-19. PubMed ID: 25339683 [TBL] [Abstract][Full Text] [Related]
23. Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation? Shaikh SR; Brzustowicz MR; Gustafson N; Stillwell W; Wassall SR Biochemistry; 2002 Aug; 41(34):10593-602. PubMed ID: 12186543 [TBL] [Abstract][Full Text] [Related]
24. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR. Holland GP; McIntyre SK; Alam TM Biophys J; 2006 Jun; 90(11):4248-60. PubMed ID: 16533851 [TBL] [Abstract][Full Text] [Related]
26. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. Quinn PJ Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113 [TBL] [Abstract][Full Text] [Related]
27. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Filippov A; Orädd G; Lindblom G Biophys J; 2006 Mar; 90(6):2086-92. PubMed ID: 16387761 [TBL] [Abstract][Full Text] [Related]
28. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. Nyström JH; Lönnfors M; Nyholm TK Biophys J; 2010 Jul; 99(2):526-33. PubMed ID: 20643071 [TBL] [Abstract][Full Text] [Related]
29. Membrane properties of and cholesterol's interactions with a biologically relevant three-chain sphingomyelin: 3O-palmitoyl-N-palmitoyl-D-erythro-sphingomyelin. Sergelius C; Slotte JP Biochim Biophys Acta; 2011 Dec; 1808(12):2841-8. PubMed ID: 21893026 [TBL] [Abstract][Full Text] [Related]
30. Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Smaby JM; Momsen M; Kulkarni VS; Brown RE Biochemistry; 1996 May; 35(18):5696-704. PubMed ID: 8639529 [TBL] [Abstract][Full Text] [Related]
31. A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelin, or phosphatidylcholine. Nyholm TK; Nylund M; Slotte JP Biophys J; 2003 May; 84(5):3138-46. PubMed ID: 12719243 [TBL] [Abstract][Full Text] [Related]
32. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1. Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409 [TBL] [Abstract][Full Text] [Related]
33. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy. Et-Thakafy O; Guyomarc'h F; Lopez C Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1523-1532. PubMed ID: 31295476 [TBL] [Abstract][Full Text] [Related]
34. Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC. Lopez C; Cheng K; Perez J Chem Phys Lipids; 2018 Sep; 215():46-55. PubMed ID: 30076798 [TBL] [Abstract][Full Text] [Related]
35. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Bakht O; Pathak P; London E Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350 [TBL] [Abstract][Full Text] [Related]
36. Characterization of phase separation phenomena in hybrid lipid/block copolymer/cholesterol bilayers using laurdan fluorescence with log-normal multipeak analysis. Hamada N; Longo ML Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183887. PubMed ID: 35150645 [TBL] [Abstract][Full Text] [Related]
37. Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure. Shahedi V; Orädd G; Lindblom G Biophys J; 2006 Oct; 91(7):2501-7. PubMed ID: 16829566 [TBL] [Abstract][Full Text] [Related]
38. Compared effects of cholesterol and 7-dehydrocholesterol on sphingomyelin-glycerophospholipid bilayers studied by ESR. Wolf C; Chachaty C Biophys Chem; 2000 May; 84(3):269-79. PubMed ID: 10852314 [TBL] [Abstract][Full Text] [Related]
39. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Niemelä P; Hyvönen MT; Vattulainen I Biophys J; 2004 Nov; 87(5):2976-89. PubMed ID: 15315947 [TBL] [Abstract][Full Text] [Related]
40. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. Kinoshita M; Suzuki KG; Matsumori N; Takada M; Ano H; Morigaki K; Abe M; Makino A; Kobayashi T; Hirosawa KM; Fujiwara TK; Kusumi A; Murata M J Cell Biol; 2017 Apr; 216(4):1183-1204. PubMed ID: 28330937 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]