These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 21081096)
1. Modeling DNA polymerase μ motions: subtle transitions before chemistry. Li Y; Schlick T Biophys J; 2010 Nov; 99(10):3463-72. PubMed ID: 21081096 [TBL] [Abstract][Full Text] [Related]
2. "Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides. Li Y; Schlick T PLoS Comput Biol; 2013; 9(5):e1003074. PubMed ID: 23717197 [TBL] [Abstract][Full Text] [Related]
3. Sequential side-chain residue motions transform the binary into the ternary state of DNA polymerase lambda. Foley MC; Arora K; Schlick T Biophys J; 2006 Nov; 91(9):3182-95. PubMed ID: 16920835 [TBL] [Abstract][Full Text] [Related]
4. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. Sampoli Benítez BA; Arora K; Balistreri L; Schlick T J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064 [TBL] [Abstract][Full Text] [Related]
5. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. Arora K; Beard WA; Wilson SH; Schlick T Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758 [TBL] [Abstract][Full Text] [Related]
6. Structural insight into the substrate specificity of DNA Polymerase mu. Moon AF; Garcia-Diaz M; Bebenek K; Davis BJ; Zhong X; Ramsden DA; Kunkel TA; Pedersen LC Nat Struct Mol Biol; 2007 Jan; 14(1):45-53. PubMed ID: 17159995 [TBL] [Abstract][Full Text] [Related]
7. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining. Davis BJ; Havener JM; Ramsden DA Nucleic Acids Res; 2008 May; 36(9):3085-94. PubMed ID: 18397950 [TBL] [Abstract][Full Text] [Related]
8. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Sampoli Benítez B; Barbati ZR; Arora K; Bogdanovic J; Schlick T Biophys J; 2013 Dec; 105(11):2559-68. PubMed ID: 24314086 [TBL] [Abstract][Full Text] [Related]
9. Sustained active site rigidity during synthesis by human DNA polymerase μ. Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC Nat Struct Mol Biol; 2014 Mar; 21(3):253-60. PubMed ID: 24487959 [TBL] [Abstract][Full Text] [Related]
10. Solution structure of polymerase mu's BRCT Domain reveals an element essential for its role in nonhomologous end joining. DeRose EF; Clarkson MW; Gilmore SA; Galban CJ; Tripathy A; Havener JM; Mueller GA; Ramsden DA; London RE; Lee AL Biochemistry; 2007 Oct; 46(43):12100-10. PubMed ID: 17915942 [TBL] [Abstract][Full Text] [Related]
11. In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism. Sampoli Benítez BA; Arora K; Schlick T Biophys J; 2006 Jan; 90(1):42-56. PubMed ID: 16214865 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. Rodriguez AC; Park HW; Mao C; Beese LS J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752 [TBL] [Abstract][Full Text] [Related]
13. Simulations of DNA pol lambda R517 mutants indicate 517's crucial role in ternary complex stability and suggest DNA slippage origin. Foley MC; Schlick T J Am Chem Soc; 2008 Mar; 130(12):3967-77. PubMed ID: 18307346 [TBL] [Abstract][Full Text] [Related]
14. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. Perlow RA; Broyde S J Mol Biol; 2003 Apr; 327(4):797-818. PubMed ID: 12654264 [TBL] [Abstract][Full Text] [Related]
15. Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Romain F; Barbosa I; Gouge J; Rougeon F; Delarue M Nucleic Acids Res; 2009 Aug; 37(14):4642-56. PubMed ID: 19502493 [TBL] [Abstract][Full Text] [Related]
16. Structural evidence for an in Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645 [TBL] [Abstract][Full Text] [Related]
17. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. Genna V; Carloni P; De Vivo M J Am Chem Soc; 2018 Mar; 140(9):3312-3321. PubMed ID: 29424536 [TBL] [Abstract][Full Text] [Related]
18. Solution structure of a viral DNA repair polymerase. Maciejewski MW; Shin R; Pan B; Marintchev A; Denninger A; Mullen MA; Chen K; Gryk MR; Mullen GP Nat Struct Biol; 2001 Nov; 8(11):936-41. PubMed ID: 11685238 [TBL] [Abstract][Full Text] [Related]
19. Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures. Cannistraro VJ; Taylor JS J Biol Chem; 2007 Apr; 282(15):11188-96. PubMed ID: 17303570 [TBL] [Abstract][Full Text] [Related]
20. Lack of sugar discrimination by human Pol mu requires a single glycine residue. Ruiz JF; Juárez R; García-Díaz M; Terrados G; Picher AJ; González-Barrera S; Fernández de Henestrosa AR; Blanco L Nucleic Acids Res; 2003 Aug; 31(15):4441-9. PubMed ID: 12888504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]