These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21081168)

  • 1. Crystal structure of FabG4 from Mycobacterium tuberculosis reveals the importance of C-terminal residues in ketoreductase activity.
    Dutta D; Bhattacharyya S; Mukherjee S; Saha B; Das AK
    J Struct Biol; 2011 Apr; 174(1):147-55. PubMed ID: 21081168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of hexanoyl-CoA bound to β-ketoacyl reductase FabG4 of Mycobacterium tuberculosis.
    Dutta D; Bhattacharyya S; Roychowdhury A; Biswas R; Das AK
    Biochem J; 2013 Feb; 450(1):127-39. PubMed ID: 23163771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation.
    Zhou X; Lou Z; Fu S; Yang A; Shen H; Li Z; Feng Y; Bartlam M; Wang H; Rao Z
    J Mol Biol; 2010 Mar; 396(4):1012-24. PubMed ID: 20036253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy.
    Hoffman DW; Cameron CS; Davies C; White SW; Ramakrishnan V
    J Mol Biol; 1996 Dec; 264(5):1058-71. PubMed ID: 9000630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a putative pyridoxine 5'-phosphate oxidase (Rv2607) from Mycobacterium tuberculosis.
    Pédelacq JD; Rho BS; Kim CY; Waldo GS; Lekin TP; Segelke BW; Rupp B; Hung LW; Kim SI; Terwilliger TC
    Proteins; 2006 Mar; 62(3):563-9. PubMed ID: 16374842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of fatty acid-CoA racemase from Mycobacterium tuberculosis H37Rv.
    Lee KS; Park SM; Rhee KH; Bang WG; Hwang KY; Chi YM
    Proteins; 2006 Aug; 64(3):817-22. PubMed ID: 16755588
    [No Abstract]   [Full Text] [Related]  

  • 7. Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes.
    Chen L; Rydel TJ; Gu F; Dunaway CM; Pikul S; Dunham KM; Barnett BL
    J Mol Biol; 1999 Oct; 293(3):545-57. PubMed ID: 10543949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the human carboxypeptidase N (kininase I) catalytic domain.
    Keil C; Maskos K; Than M; Hoopes JT; Huber R; Tan F; Deddish PA; Erdös EG; Skidgel RA; Bode W
    J Mol Biol; 2007 Feb; 366(2):504-16. PubMed ID: 17157876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis.
    Dym O; Albeck S; Peleg Y; Schwarz A; Shakked Z; Burstein Y; Zimhony O
    J Mol Biol; 2009 Nov; 393(4):937-50. PubMed ID: 19733180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and biochemical properties of ReH16_A1887, the 3-ketoacyl-CoA thiolase from Ralstonia eutropha H16.
    Kim J; Kim KJ
    Biochem Biophys Res Commun; 2015 Apr; 459(3):547-52. PubMed ID: 25749345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of NusA from Thermotoga maritima and functional implication of the N-terminal domain.
    Shin DH; Nguyen HH; Jancarik J; Yokota H; Kim R; Kim SH
    Biochemistry; 2003 Nov; 42(46):13429-37. PubMed ID: 14621988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases.
    Boulanger MJ; Murphy ME
    J Mol Biol; 2002 Feb; 315(5):1111-27. PubMed ID: 11827480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity.
    Kiema TR; Taskinen JP; Pirilä PL; Koivuranta KT; Wierenga RK; Hiltunen JK
    Biochem J; 2002 Oct; 367(Pt 2):433-41. PubMed ID: 12106015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism.
    Mathieu M; Modis Y; Zeelen JP; Engel CK; Abagyan RA; Ahlberg A; Rasmussen B; Lamzin VS; Kunau WH; Wierenga RK
    J Mol Biol; 1997 Oct; 273(3):714-28. PubMed ID: 9402066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding.
    Chen CK; Lee GC; Ko TP; Guo RT; Huang LM; Liu HJ; Ho YF; Shaw JF; Wang AH
    J Mol Biol; 2009 Jul; 390(4):672-85. PubMed ID: 19447113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding.
    Moore SA; Kingston RL; Loomes KM; Hernell O; Bläckberg L; Baker HM; Baker EN
    J Mol Biol; 2001 Sep; 312(3):511-23. PubMed ID: 11563913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis.
    Wisedchaisri G; Chou CJ; Wu M; Roach C; Rice AE; Holmes RK; Beeson C; Hol WG
    Biochemistry; 2007 Jan; 46(2):436-47. PubMed ID: 17209554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal and solution structure of a putative transcriptional antiterminator from Mycobacterium tuberculosis.
    Morth JP; Feng V; Perry LJ; Svergun DI; Tucker PA
    Structure; 2004 Sep; 12(9):1595-605. PubMed ID: 15341725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.