BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21081188)

  • 1. Damage initiation sites in osteoporotic and normal human cancellous bone.
    Soicher MA; Wang X; Zauel RR; Fyhrie DP
    Bone; 2011 Mar; 48(3):663-6. PubMed ID: 21081188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology).
    Wang X; Zauel RR; Rao DS; Fyhrie DP
    Bone; 2008 Jun; 42(6):1184-92. PubMed ID: 18378204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhomogeneity of tissue-level strain distributions in individual trabeculae: mathematical model studies of normal and osteoporosis cases.
    Gefen A; Portnoy S; Diamant I
    Med Eng Phys; 2008 Jun; 30(5):624-30. PubMed ID: 17697794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.
    Busse B; Hahn M; Soltau M; Zustin J; PĆ¼schel K; Duda GN; Amling M
    Bone; 2009 Dec; 45(6):1034-43. PubMed ID: 19679206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling.
    Carpentier VT; Wong J; Yeap Y; Gan C; Sutton-Smith P; Badiei A; Fazzalari NL; Kuliwaba JS
    Bone; 2012 Mar; 50(3):688-94. PubMed ID: 22173055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture.
    Qiu S; Rao DS; Palnitkar S; Parfitt AM
    J Bone Miner Res; 2003 Sep; 18(9):1657-63. PubMed ID: 12968675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study.
    Chapurlat RD; Arlot M; Burt-Pichat B; Chavassieux P; Roux JP; Portero-Muzy N; Delmas PD
    J Bone Miner Res; 2007 Oct; 22(10):1502-9. PubMed ID: 17824840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone histomorphometry in the pathophysiological evaluation of primary and secondary osteoporosis and various treatment modalities.
    Steiniche T
    APMIS Suppl; 1995; 51():1-44. PubMed ID: 7669370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microanatomy of trabecular bone in young normal and osteoporotic elderly males.
    Shahtaheri SM
    Aging Male; 2007 Jun; 10(2):71-5. PubMed ID: 17558971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging views about "osteoporosis", bone health, strength, fragility, and their determinants.
    Frost HM
    J Bone Miner Metab; 2002; 20(6):319-25. PubMed ID: 12434158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis.
    Frost ML; Fogelman I; Blake GM; Marsden PK; Cook G
    J Bone Miner Res; 2004 Nov; 19(11):1797-804. PubMed ID: 15476579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric.
    Homminga J; Mccreadie BR; Weinans H; Huiskes R
    J Biomech; 2003 Oct; 36(10):1461-7. PubMed ID: 14499295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural properties of normal and osteoporotic bone.
    Einhorn TA
    Instr Course Lect; 2003; 52():533-9. PubMed ID: 12690879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteocyte lacuna size and shape in women with and without osteoporotic fracture.
    McCreadie BR; Hollister SJ; Schaffler MB; Goldstein SA
    J Biomech; 2004 Apr; 37(4):563-72. PubMed ID: 14996569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics.
    McDonald K; Little J; Pearcy M; Adam C
    Med Eng Phys; 2010 Jul; 32(6):653-61. PubMed ID: 20439162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.