These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21081188)

  • 41. Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats.
    Hao YJ; Zhang G; Wang YS; Qin L; Hung WY; Leung K; Pei FX
    Bone; 2007 Oct; 41(4):631-8. PubMed ID: 17652051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A micromechanical model to predict damage and failure in biological tissues. Application to the ligament-to-bone attachment in the human knee joint.
    Subit D; Chabrand P; Masson C
    J Biomech; 2009 Feb; 42(3):261-5. PubMed ID: 19135201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling microdamage behavior of cortical bone.
    Donaldson F; Ruffoni D; Schneider P; Levchuk A; Zwahlen A; Pankaj P; Müller R
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1227-42. PubMed ID: 24622917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution.
    Voide R; Schneider P; Stauber M; Wyss P; Stampanoni M; Sennhauser U; van Lenthe GH; Müller R
    Bone; 2009 Aug; 45(2):164-73. PubMed ID: 19410668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone.
    Augat P; Simon U; Liedert A; Claes L
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S36-43. PubMed ID: 15372141
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Structural mechanisms and mathematical modeling of the bone tissue damage caused by hyper-speed impact].
    Ishchenko AN; Belov NN; Gaĭdash AA; Iugov NT; Bashirov RS; Afanas'eva SA; Sinitsa LN
    Voen Med Zh; 2011 Mar; 332(3):15-23. PubMed ID: 21770310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone.
    Demirtas A; Ural A
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Structure Characteristics of Osteocyte Lacunae on Squeeze Damage Resistance of Osteons.
    Liu Y; Li A; Chen B
    Cells Tissues Organs; 2019; 208(3-4):142-147. PubMed ID: 32069449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study on static morphometric parameters for a diagnostic approach of osteoporosis.
    Voisin MC; Kemeny A; Canalia AM; Pinaudeau Y
    Pathol Res Pract; 1984 Mar; 178(4):378-83. PubMed ID: 6728719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elastic properties of osteoporotic bone measured by scanning acoustic microscopy.
    Hasegawa K; Turner CH; Recker RR; Wu E; Burr DB
    Bone; 1995 Jan; 16(1):85-90. PubMed ID: 7742089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterizing microcrack orientation distribution functions in osteonal bone samples.
    Wolfram U; Schwiedrzik JJ; Mirzaali MJ; Bürki A; Varga P; Olivier C; Peyrin F; Zysset PK
    J Microsc; 2016 Dec; 264(3):268-281. PubMed ID: 27421084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mechanical properties of bone in osteoporosis.
    Dickenson RP; Hutton WC; Stott JR
    J Bone Joint Surg Br; 1981 Aug; 63-B(2):233-8. PubMed ID: 7217148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D image analysis and artificial intelligence for bone disease classification.
    Akgundogdu A; Jennane R; Aufort G; Benhamou CL; Ucan ON
    J Med Syst; 2010 Oct; 34(5):815-28. PubMed ID: 20703627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Morphological modifications od the upper femoral metaphysis on man stricken by osteoporotic disease].
    Cirotteau Y
    C R Acad Sci III; 1999 May; 322(5):401-11. PubMed ID: 10340112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Digital image correlation of bone sequential microscopic observations.
    Budyn E; Jonvaux J; Hoc T
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):815-37. PubMed ID: 25099565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanomechanics insights into the performance of healthy and osteoporotic bones.
    Wang YT; Chang SY; Huang YC; Tsai TC; Chen CM; Lim CT
    Nano Lett; 2013 Nov; 13(11):5247-54. PubMed ID: 24063581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic algorithm and image processing for osteoporosis diagnosis.
    Jennane R; Almhdie-Imjabber A; Hambli R; Ucan ON; Benhamou CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5597-600. PubMed ID: 21096487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone and bones, architecture and stress, fossils and osteoporosis.
    Oxnard CE
    J Biomech; 1993; 26 Suppl 1():63-79. PubMed ID: 8505353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Statistical shape and appearance models of bones.
    Sarkalkan N; Weinans H; Zadpoor AA
    Bone; 2014 Mar; 60():129-40. PubMed ID: 24334169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.