These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21081313)

  • 1. Red algae lose key mitochondrial genes in response to becoming parasitic.
    Hancock L; Goff L; Lane C
    Genome Biol Evol; 2010; 2():897-910. PubMed ID: 21081313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red Algal Mitochondrial Genomes Are More Complete than Previously Reported.
    Salomaki ED; Lane CE
    Genome Biol Evol; 2017 Jan; 9(1):48-63. PubMed ID: 28175279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parasitism finds many solutions to the same problems in red algae (Florideophyceae, Rhodophyta).
    Freese JM; Lane CE
    Mol Biochem Parasitol; 2017 Jun; 214():105-111. PubMed ID: 28427949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red algal parasites: models for a life history evolution that leaves photosynthesis behind again and again.
    Blouin NA; Lane CE
    Bioessays; 2012 Mar; 34(3):226-35. PubMed ID: 22247039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Organelle Genomes in the Photosynthetic Red Algal Parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) Have Elevated Substitution Rates and Extreme Gene Loss in the Plastid Genome.
    Preuss M; Verbruggen H; Zuccarello GC
    J Phycol; 2020 Aug; 56(4):1006-1018. PubMed ID: 32215918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene-rich plastid genomes of two parasitic red algal species, Laurencia australis and L. verruciformis (Rhodomelaceae, Ceramiales), and a taxonomic revision of Janczewskia.
    Preuss M; Díaz-Tapia P; Verbruggen H; Zuccarello GC
    J Phycol; 2023 Oct; 59(5):950-962. PubMed ID: 37638497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta).
    Zhang L; Wang X; Qian H; Chi S; Liu C; Liu T
    PLoS One; 2012; 7(6):e40241. PubMed ID: 22768261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete mitochondrial genome of agar-producing red alga Gracilariopsis chorda (Gracilariales).
    Yang EC; Kim KM; Kim SY; Yoon HS
    Mitochondrial DNA; 2014 Oct; 25(5):339-41. PubMed ID: 23789772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular phylogenetics supports a clade of red algal parasites retaining native plastids: taxonomy and terminology revised.
    Salomaki ED; Lane CE
    J Phycol; 2019 Apr; 55(2):279-288. PubMed ID: 30537065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.
    DePriest MS; Bhattacharya D; López-Bautista JM
    Biol Bull; 2014 Oct; 227(2):191-200. PubMed ID: 25411376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of ancient genome reduction in red algae (Rhodophyta).
    Qiu H; Price DC; Yang EC; Yoon HS; Bhattacharya D
    J Phycol; 2015 Aug; 51(4):624-36. PubMed ID: 26986787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE EVOLUTION OF PARASITES FROM THEIR HOSTS: A CASE STUDY IN THE PARASITIC RED ALGAE.
    Goff LJ; Ashen J; Moon D
    Evolution; 1997 Aug; 51(4):1068-1078. PubMed ID: 28565502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 5 S rRNA gene is present in the mitochondrial genome of the protist Reclinomonas americana but is absent from red algal mitochondrial DNA.
    Lang BF; Goff LJ; Gray MW
    J Mol Biol; 1996 Sep; 261(5):407-13. PubMed ID: 8800209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae.
    Yang EC; Kim KM; Kim SY; Lee J; Boo GH; Lee JH; Nelson WA; Yi G; Schmidt WE; Fredericq S; Boo SM; Bhattacharya D; Yoon HS
    Genome Biol Evol; 2015 Aug; 7(8):2394-406. PubMed ID: 26245677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae.
    Burger G; Saint-Louis D; Gray MW; Lang BF
    Plant Cell; 1999 Sep; 11(9):1675-94. PubMed ID: 10488235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of Parasite and Host Organelle DNA during Cellular Transformation of Red Algae by Their Parasites.
    Goff LJ; Coleman AW
    Plant Cell; 1995 Nov; 7(11):1899-1911. PubMed ID: 12242362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation of the red algal parasite Congracilaria babae onto a secondary host species, Hydropuntia sp. (Gracilariaceae, Rhodophyta).
    Ng PK; Lim PE; Phang SM
    PLoS One; 2014; 9(5):e97450. PubMed ID: 24820330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria.
    Qiu H; Rossoni AW; Weber APM; Yoon HS; Bhattacharya D
    BMC Evol Biol; 2018 Apr; 18(1):41. PubMed ID: 29606099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete mitochondrial genome of sublittoral macroalga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta).
    Kim KM; Yang EC; Yi G; Yoon HS
    Mitochondrial DNA; 2014 Aug; 25(4):273-4. PubMed ID: 23789771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.