BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21081314)

  • 21. On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review.
    Vesteg M; Vacula R; Krajcovic J
    Folia Microbiol (Praha); 2009; 54(4):303-21. PubMed ID: 19826918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogeny of dinoflagellate plastid genes recently transferred to the nucleus supports a common ancestry with red algal plastid genes.
    Wang Y; Joly S; Morse D
    J Mol Evol; 2008 Feb; 66(2):175-84. PubMed ID: 18253685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events.
    Füssy Z; Oborník M
    Methods Mol Biol; 2024; 2776():21-41. PubMed ID: 38502496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PHYLOGENOMICS AND SECONDARY PLASTIDS: A LOOK BACK AND A LOOK AHEAD(1).
    Braun EL; Phillips N
    J Phycol; 2008 Feb; 44(1):2-6. PubMed ID: 27041031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins.
    Burki F; Okamoto N; Pombert JF; Keeling PJ
    Proc Biol Sci; 2012 Jun; 279(1736):2246-54. PubMed ID: 22298847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages.
    Bachvaroff TR; Sanchez Puerta MV; Delwiche CF
    Mol Biol Evol; 2005 Sep; 22(9):1772-82. PubMed ID: 15917498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome.
    Dorrell RG; Gile G; McCallum G; Méheust R; Bapteste EP; Klinger CM; Brillet-Guéguen L; Freeman KD; Richter DJ; Bowler C
    Elife; 2017 May; 6():. PubMed ID: 28498102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic.
    Reyes-Prieto A; Moustafa A; Bhattacharya D
    Curr Biol; 2008 Jul; 18(13):956-62. PubMed ID: 18595706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids.
    Harper JT; Keeling PJ
    Mol Biol Evol; 2003 Oct; 20(10):1730-5. PubMed ID: 12885964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles.
    Baurain D; Brinkmann H; Petersen J; Rodríguez-Ezpeleta N; Stechmann A; Demoulin V; Roger AJ; Burger G; Lang BF; Philippe H
    Mol Biol Evol; 2010 Jul; 27(7):1698-709. PubMed ID: 20194427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes.
    Hongo Y; Yabuki A; Fujikura K; Nagai S
    Sci Rep; 2019 Jun; 9(1):9009. PubMed ID: 31227737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid.
    Waller RF; Gornik SG; Koreny L; Pain A
    Commun Integr Biol; 2016; 9(1):e1116653. PubMed ID: 27066182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.
    Huerlimann R; Zenger KR; Jerry DR; Heimann K
    PLoS One; 2015; 10(7):e0131099. PubMed ID: 26131555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.
    Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov.
    Okamoto N; Chantangsi C; Horák A; Leander BS; Keeling PJ
    PLoS One; 2009 Sep; 4(9):e7080. PubMed ID: 19759916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary Dynamics of Cryptophyte Plastid Genomes.
    Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W
    Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.