These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte. Tanemoto M; Vanoye CG; Dong K; Welch R; Abe T; Hebert SC; Xu JZ Am J Physiol Renal Physiol; 2000 Apr; 278(4):F659-66. PubMed ID: 10751228 [TBL] [Abstract][Full Text] [Related]
10. Tamm-Horsfall protein/uromodulin deficiency elicits tubular compensatory responses leading to hypertension and hyperuricemia. Liu Y; Goldfarb DS; El-Achkar TM; Lieske JC; Wu XR Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1062-F1076. PubMed ID: 29357410 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Golgin-160 in cell surface transport of renal ROMK channel: co-expression of Golgin-160 increases ROMK currents. Bundis F; Neagoe I; Schwappach B; Steinmeyer K Cell Physiol Biochem; 2006; 17(1-2):1-12. PubMed ID: 16543716 [TBL] [Abstract][Full Text] [Related]
12. Novel uromodulin mutation in familial juvenile hyperuricemic nephropathy. Wei X; Xu R; Yang Z; Li Z; Liao Y; Johnson RJ; Yu X; Chen W Am J Nephrol; 2012; 36(2):114-20. PubMed ID: 22776760 [TBL] [Abstract][Full Text] [Related]
13. Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction. Wang T Clin Exp Nephrol; 2012 Feb; 16(1):49-54. PubMed ID: 22038261 [TBL] [Abstract][Full Text] [Related]
14. Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Starremans PG; van der Kemp AW; Knoers NV; van den Heuvel LP; Bindels RJ Pflugers Arch; 2002 Jan; 443(3):466-72. PubMed ID: 11810218 [TBL] [Abstract][Full Text] [Related]
15. Uromodulin: old friend with new roles in health and disease. Iorember FM; Vehaskari VM Pediatr Nephrol; 2014 Jul; 29(7):1151-8. PubMed ID: 23880785 [TBL] [Abstract][Full Text] [Related]
16. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values. Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053 [TBL] [Abstract][Full Text] [Related]
17. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. Lu M; Wang T; Yan Q; Yang X; Dong K; Knepper MA; Wang W; Giebisch G; Shull GE; Hebert SC J Biol Chem; 2002 Oct; 277(40):37881-7. PubMed ID: 12130653 [TBL] [Abstract][Full Text] [Related]
18. From juvenile hyperuricaemia to dysfunctional uromodulin: an ongoing metamorphosis. Venkat-Raman G; Gast C; Marinaki A; Fairbanks L Pediatr Nephrol; 2016 Nov; 31(11):2035-42. PubMed ID: 26872483 [TBL] [Abstract][Full Text] [Related]
19. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. Lu M; Leng Q; Egan ME; Caplan MJ; Boulpaep EL; Giebisch GH; Hebert SC J Clin Invest; 2006 Mar; 116(3):797-807. PubMed ID: 16470247 [TBL] [Abstract][Full Text] [Related]
20. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Lin DH; Sterling H; Yang B; Hebert SC; Giebisch G; Wang WH Am J Physiol Renal Physiol; 2004 May; 286(5):F881-92. PubMed ID: 15075184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]