BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21081511)

  • 1. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments.
    van Heeringen SJ; Veenstra GJ
    Bioinformatics; 2011 Jan; 27(2):270-1. PubMed ID: 21081511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data.
    Ding J; Hu H; Li X
    Nucleic Acids Res; 2014 Mar; 42(5):e35. PubMed ID: 24322294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. coMOTIF: a mixture framework for identifying transcription factor and a coregulator motif in ChIP-seq data.
    Xu M; Weinberg CR; Umbach DM; Li L
    Bioinformatics; 2011 Oct; 27(19):2625-32. PubMed ID: 21775309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data.
    Liu B; Yang J; Li Y; McDermaid A; Ma Q
    Brief Bioinform; 2018 Sep; 19(5):1069-1081. PubMed ID: 28334268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reusable, extensible, and modifiable R scripts and Kepler workflows for comprehensive single set ChIP-seq analysis.
    Cormier N; Kolisnik T; Bieda M
    BMC Bioinformatics; 2016 Jul; 17(1):270. PubMed ID: 27377783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep and wide digging for binding motifs in ChIP-Seq data.
    Kulakovskiy IV; Boeva VA; Favorov AV; Makeev VJ
    Bioinformatics; 2010 Oct; 26(20):2622-3. PubMed ID: 20736340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data.
    Qin ZS; Yu J; Shen J; Maher CA; Hu M; Kalyana-Sundaram S; Yu J; Chinnaiyan AM
    BMC Bioinformatics; 2010 Jul; 11():369. PubMed ID: 20598134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.
    Vishnevsky OV; Bocharnikov AV; Kolchanov NA
    J Bioinform Comput Biol; 2018 Feb; 16(1):1740012. PubMed ID: 29281953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
    Mitra S; Biswas A; Narlikar L
    PLoS Comput Biol; 2018 Apr; 14(4):e1006090. PubMed ID: 29684008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ALEA: a toolbox for allele-specific epigenomics analysis.
    Younesy H; Möller T; Heravi-Moussavi A; Cheng JB; Costello JF; Lorincz MC; Karimi MM; Jones SJ
    Bioinformatics; 2014 Apr; 30(8):1172-1174. PubMed ID: 24371156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments.
    Laajala TD; Raghav S; Tuomela S; Lahesmaa R; Aittokallio T; Elo LL
    BMC Genomics; 2009 Dec; 10():618. PubMed ID: 20017957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.