BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21081699)

  • 1. Dynamics of podosome stiffness revealed by atomic force microscopy.
    Labernadie A; Thibault C; Vieu C; Maridonneau-Parini I; Charrière GM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):21016-21. PubMed ID: 21081699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Working together: spatial synchrony in the force and actin dynamics of podosome first neighbors.
    Proag A; Bouissou A; Mangeat T; Voituriez R; Delobelle P; Thibault C; Vieu C; Maridonneau-Parini I; Poincloux R
    ACS Nano; 2015; 9(4):3800-13. PubMed ID: 25791988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organized podosomes are dynamic mechanosensors.
    Collin O; Na S; Chowdhury F; Hong M; Shin ME; Wang F; Wang N
    Curr Biol; 2008 Sep; 18(17):1288-94. PubMed ID: 18760605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes.
    Labernadie A; Bouissou A; Delobelle P; Balor S; Voituriez R; Proag A; Fourquaux I; Thibault C; Vieu C; Poincloux R; Charrière GM; Maridonneau-Parini I
    Nat Commun; 2014 Nov; 5():5343. PubMed ID: 25385672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage podosomes go 3D.
    Van Goethem E; Guiet R; Balor S; Charrière GM; Poincloux R; Labrousse A; Maridonneau-Parini I; Le Cabec V
    Eur J Cell Biol; 2011; 90(2-3):224-36. PubMed ID: 20801545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring.
    Bouissou A; Proag A; Bourg N; Pingris K; Cabriel C; Balor S; Mangeat T; Thibault C; Vieu C; Dupuis G; Fort E; Lévêque-Fort S; Maridonneau-Parini I; Poincloux R
    ACS Nano; 2017 Apr; 11(4):4028-4040. PubMed ID: 28355484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined AFM and super-resolution localisation microscopy: Investigating the structure and dynamics of podosomes.
    Hirvonen LM; Marsh RJ; Jones GE; Cox S
    Eur J Cell Biol; 2020 Sep; 99(7):151106. PubMed ID: 33070038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the force and spatial dynamics of macrophage podosomes by multi-particle tracking.
    Proag A; Bouissou A; Vieu C; Maridonneau-Parini I; Poincloux R
    Methods; 2016 Feb; 94():75-84. PubMed ID: 26342257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of podosome ring protein arrangement using localization microscopy images.
    Staszowska AD; Fox-Roberts P; Foxall E; Jones GE; Cox S
    Methods; 2017 Feb; 115():9-16. PubMed ID: 27840289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the mechanical landscape - new insights into podosome architecture and mechanics.
    van den Dries K; Linder S; Maridonneau-Parini I; Poincloux R
    J Cell Sci; 2019 Dec; 132(24):. PubMed ID: 31836688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes.
    Panzer L; Trübe L; Klose M; Joosten B; Slotman J; Cambi A; Linder S
    J Cell Sci; 2016 Jan; 129(2):298-313. PubMed ID: 26621033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Podosome reformation in macrophages: assays and analysis.
    Cervero P; Panzer L; Linder S
    Methods Mol Biol; 2013; 1046():97-121. PubMed ID: 23868584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelsolin-independent podosome formation in dendritic cells.
    Hammarfjord O; Falet H; Gurniak C; Hartwig JH; Wallin RP
    PLoS One; 2011; 6(7):e21615. PubMed ID: 21779330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of atypical podosomes in extravillous trophoblasts regulates extracellular matrix degradation.
    Patel A; Dash PR
    Eur J Cell Biol; 2012 Mar; 91(3):171-9. PubMed ID: 22284833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages.
    De Clercq S; Boucherie C; Vandekerckhove J; Gettemans J; Guillabert A
    PLoS One; 2013; 8(11):e78108. PubMed ID: 24236012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin nano-architecture of phagocytic podosomes.
    Herron JC; Hu S; Watanabe T; Nogueira AT; Liu B; Kern ME; Aaron J; Taylor A; Pablo M; Chew TL; Elston TC; Hahn KM
    Nat Commun; 2022 Jul; 13(1):4363. PubMed ID: 35896550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells.
    Van Audenhove I; Debeuf N; Boucherie C; Gettemans J
    Biochim Biophys Acta; 2015 May; 1853(5):940-52. PubMed ID: 25601713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts.
    Destaing O; Sanjay A; Itzstein C; Horne WC; Toomre D; De Camilli P; Baron R
    Mol Biol Cell; 2008 Jan; 19(1):394-404. PubMed ID: 17978100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution microscopy reveals nanoscale architecture and regulation of podosome clusters in primary macrophages.
    Hu F; Zhu D; Dong H; Zhang P; Xing F; Li W; Yan R; Zhou J; Xu K; Pan L; Xu J
    iScience; 2022 Dec; 25(12):105514. PubMed ID: 36425766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14.
    Gawden-Bone C; Zhou Z; King E; Prescott A; Watts C; Lucocq J
    J Cell Sci; 2010 May; 123(Pt 9):1427-37. PubMed ID: 20356925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.