BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 21081952)

  • 1. Substrate specificity of benzamide synthetase involved in 4-hydroxy-3-nitrosobenzamide biosynthesis.
    Noguchi A; Horinouchi S; Ohnishi Y
    J Antibiot (Tokyo); 2011 Jan; 64(1):93-6. PubMed ID: 21081952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A copper-containing oxidase catalyzes C-nitrosation in nitrosobenzamide biosynthesis.
    Noguchi A; Kitamura T; Onaka H; Horinouchi S; Ohnishi Y
    Nat Chem Biol; 2010 Sep; 6(9):641-3. PubMed ID: 20676084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium LT2.
    Fresquet V; Williams L; Raushel FM
    Biochemistry; 2004 Aug; 43(33):10619-27. PubMed ID: 15311923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of L-glutamine:2-deoxy-scyllo-inosose aminotransferase (tbmB) from Streptomyces tenebrarius.
    Kharel MK; Subba B; Lee HC; Liou K; Sohng JK
    Bioorg Med Chem Lett; 2005 Jan; 15(1):89-92. PubMed ID: 15582417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen incorporation in the biosynthetic pathway of the nitrogen-containing polyketide, pamamycin in Streptomyces alboniger.
    Hashimoto M; Kozone I; Kawaide H; Abe H; Natsume M
    J Antibiot (Tokyo); 2005 Nov; 58(11):722-30. PubMed ID: 16466026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis.
    Nusca TD; Kim Y; Maltseva N; Lee JY; Eschenfeldt W; Stols L; Schofield MM; Scaglione JB; Dixon SD; Oves-Costales D; Challis GL; Hanna PC; Pfleger BF; Joachimiak A; Sherman DH
    J Biol Chem; 2012 May; 287(19):16058-72. PubMed ID: 22408253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic C-methyltransferases with antipodal stereoselectivity for structurally diverse phenolic amino acids catalyze the methylation step in the biosynthesis of the actinomycin chromophore.
    Crnovcić I; Süssmuth R; Keller U
    Biochemistry; 2010 Nov; 49(45):9698-705. PubMed ID: 20945860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis.
    Kobayashi M; Goda M; Shimizu S
    Biochem Biophys Res Commun; 1998 Dec; 253(3):662-6. PubMed ID: 9918784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization, cloning, sequencing, and expression of an aminopeptidase N from Streptomyces sp. TH-4.
    Hatanaka T; Arima J; Uraji M; Uesugi Y; Iwabuchi M
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):347-56. PubMed ID: 17082929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the ATPPase subunit and its substrate-dependent association with the GATase subunit: a novel regulatory mechanism for a two-subunit-type GMP synthetase from Pyrococcus horikoshii OT3.
    Maruoka S; Horita S; Lee WC; Nagata K; Tanokura M
    J Mol Biol; 2010 Jan; 395(2):417-29. PubMed ID: 19900465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme.
    Goto M; Miyahara I; Hayashi H; Kagamiyama H; Hirotsu K
    Biochemistry; 2003 Apr; 42(13):3725-33. PubMed ID: 12667063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamic acid gamma-monohydroxamate and hydroxylamine are alternate substrates for Escherichia coli asparagine synthetase B.
    Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3031-7. PubMed ID: 8608142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of CalS9 in the biosynthesis of UDP-xylose and the production of xylosyl-attached hybrid compound.
    Simkhada D; Oh TJ; Pageni BB; Lee HC; Liou K; Sohng JK
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):885-95. PubMed ID: 19290519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of the SgcA1 alpha-D-glucopyranosyl-1-phosphate thymidylyltransferase from the enediyne antitumor antibiotic C-1027 biosynthetic pathway and overexpression of sgcA1 in Streptomyces globisporus to improve C-1027 production.
    Murrell JM; Liu W; Shen B
    J Nat Prod; 2004 Feb; 67(2):206-13. PubMed ID: 14987060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an arginine:pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3954-9. PubMed ID: 17416668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the substrate-recognition mode of aromatic amino acid aminotransferase by combined use of quasisubstrates and site-directed mutagenesis: systematic hydroxy-group addition/deletion studies to probe the enzyme-substrate interactions.
    Hayashi H; Inoue K; Mizuguchi H; Kagamiyama H
    Biochemistry; 1996 May; 35(21):6754-61. PubMed ID: 8639626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids.
    Ozaki T; Mishima S; Nishiyama M; Kuzuyama T
    J Antibiot (Tokyo); 2009 Jul; 62(7):385-92. PubMed ID: 19557032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564.
    Mao Y; Varoglu M; Sherman DH
    Chem Biol; 1999 Apr; 6(4):251-63. PubMed ID: 10099135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two groups of thermophilic amino acid aminotransferases exhibiting broad substrate specificities for the synthesis of phenylglycine derivatives.
    Koma D; Sawai T; Hara R; Harayama S; Kino K
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):775-84. PubMed ID: 18481057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.