These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21081984)

  • 1. Infrared dipole antenna enhanced by surface phonon polaritons.
    Kim HC; Cheng X
    Opt Lett; 2010 Nov; 35(22):3748-50. PubMed ID: 21081984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna.
    Dey D; Kohoutek J; Gelfand RM; Bonakdar A; Mohseni H
    Opt Lett; 2010 Aug; 35(16):2783-5. PubMed ID: 20717456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon-mediated magnetic polaritons
in the infrared region.
    Wang LP; Zhang ZM
    Opt Express; 2011 Mar; 19 Suppl 2():A126-35. PubMed ID: 21445214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.
    Huber AJ; Ocelic N; Hillenbrand R
    J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critically coupled surface phonon-polariton excitation in silicon carbide.
    Neuner B; Korobkin D; Fietz C; Carole D; Ferro G; Shvets G
    Opt Lett; 2009 Sep; 34(17):2667-9. PubMed ID: 19724526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties.
    Brown LV; Zhao K; King N; Sobhani H; Nordlander P; Halas NJ
    J Am Chem Soc; 2013 Mar; 135(9):3688-95. PubMed ID: 23402592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties.
    Wissert MD; Schell AW; Ilin KS; Siegel M; Eisler HJ
    Nanotechnology; 2009 Oct; 20(42):425203. PubMed ID: 19779233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling between phonon-polaritons and plasmonic nanorods.
    Huck C; Vogt J; Neuman T; Nagao T; Hillenbrand R; Aizpurua J; Pucci A; Neubrech F
    Opt Express; 2016 Oct; 24(22):25528-25539. PubMed ID: 27828491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant Enhancement of Second-Harmonic Generation in the Mid-Infrared Using Localized Surface Phonon Polaritons in Subdiffractional Nanostructures.
    Razdolski I; Chen Y; Giles AJ; Gewinner S; Schöllkopf W; Hong M; Wolf M; Giannini V; Caldwell JD; Maier SA; Paarmann A
    Nano Lett; 2016 Nov; 16(11):6954-6959. PubMed ID: 27766887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-uniform excitation source for cascade enhancement of SERS via focusing of surface plasmons.
    Zhang H; Ho HP
    Opt Express; 2009 Nov; 17(23):21159-68. PubMed ID: 19997355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.
    DiPippo W; Lee BJ; Park K
    Opt Express; 2010 Aug; 18(18):19396-406. PubMed ID: 20940835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-dimensional surface phonon polaritons in boron nitride nanotubes.
    Xu XG; Ghamsari BG; Jiang JH; Gilburd L; Andreev GO; Zhi C; Bando Y; Golberg D; Berini P; Walker GC
    Nat Commun; 2014 Aug; 5():4782. PubMed ID: 25154586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation.
    Ocelic N; Hillenbrand R
    Nat Mater; 2004 Sep; 3(9):606-9. PubMed ID: 15286756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-enhanced light matter interaction at the nanometre scale.
    Hillenbrand R; Taubner T; Keilmann F
    Nature; 2002 Jul; 418(6894):159-62. PubMed ID: 12110883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Mid-Infrared Phonon Polaritons in the Aqueous Phase.
    Wang H; Janzen E; Wang L; Edgar JH; Xu XG
    Nano Lett; 2020 May; 20(5):3986-3991. PubMed ID: 32320254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-confined surface plasmon polaritons for sensing applications in the near-infrared.
    Gan CH; Lalanne P
    Opt Lett; 2010 Feb; 35(4):610-2. PubMed ID: 20160834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.