BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21082137)

  • 1. Zinc coverage dependent structure of PdZn surface alloy.
    He X; Huang Y; Chen ZX
    Phys Chem Chem Phys; 2011 Jan; 13(1):107-9. PubMed ID: 21082137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study.
    Chen ZX; Neyman KM; Lim KH; Rösch N
    Langmuir; 2004 Sep; 20(19):8068-77. PubMed ID: 15350074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn adsorption on Pd(111): ZnO and PdZn alloy formation.
    Gabasch H; Knop-Gericke A; Schlögl R; Penner S; Jenewein B; Hayek K; Klötzer B
    J Phys Chem B; 2006 Jun; 110(23):11391-8. PubMed ID: 16771411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CO oxidation mechanism and reactivity on PdZn alloys.
    Johnson RS; DeLaRiva A; Ashbacher V; Halevi B; Villanueva CJ; Smith GK; Lin S; Datye AK; Guo H
    Phys Chem Chem Phys; 2013 May; 15(20):7768-76. PubMed ID: 23598906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Zn on the adsorption of CO on Pd(111).
    Huang Y; Ding W; Chen ZX
    J Chem Phys; 2010 Dec; 133(21):214702. PubMed ID: 21142309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials.
    Bambagioni V; Bianchini C; Filippi J; Oberhauser W; Marchionni A; Vizza F; Psaro R; Sordelli L; Foresti ML; Innocenti M
    ChemSusChem; 2009; 2(1):99-112. PubMed ID: 19115302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd-promoting reduction of zinc salt to PdZn alloy catalyst for the hydrogenation of nitrothioanisole.
    Cheng M; Zhang X; Guo Z; Lv P; Xiong R; Wang Z; Zhou Z; Zhang M
    J Colloid Interface Sci; 2021 Nov; 602():459-468. PubMed ID: 34144303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study towards the reactivity of the Pd(111) surface with low Zn deposition.
    Huang Y; He X; Chen ZX
    J Chem Phys; 2011 May; 134(18):184702. PubMed ID: 21568524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming.
    Rameshan C; Stadlmayr W; Weilach C; Penner S; Lorenz H; Hävecker M; Blume R; Rocha T; Teschner D; Knop-Gericke A; Schlögl R; Memmel N; Zemlyanov D; Rupprechter G; Klötzer B
    Angew Chem Int Ed Engl; 2010 Apr; 49(18):3224-7. PubMed ID: 20352638
    [No Abstract]   [Full Text] [Related]  

  • 11. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition.
    Neyman KM; Lim KH; Chen ZX; Moskaleva LV; Bayer A; Reindl A; Borgmann D; Denecke R; Steinrück HP; Rösch N
    Phys Chem Chem Phys; 2007 Jul; 9(27):3470-82. PubMed ID: 17612715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxide-metal nanowires by oxidation of a one-dimensional Mn-Pd alloy: stability and reactivity.
    Li F; Allegretti F; Surnev S; Netzer FP
    Langmuir; 2010 Nov; 26(21):16474-80. PubMed ID: 20527835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction.
    Wu Y; Wang D; Zhao P; Niu Z; Peng Q; Li Y
    Inorg Chem; 2011 Mar; 50(6):2046-8. PubMed ID: 21268607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH; Huang T; Liu P; Zhang J; Sasaki K; Vukmirovic MB; Adzic RR
    Langmuir; 2006 Dec; 22(25):10409-15. PubMed ID: 17129009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New high-palladium casting alloys: studies of the interface with porcelain.
    Papazoglou E; Brantley WA; Mitchell JC; Cai Z; Carr AB
    Int J Prosthodont; 1996; 9(4):315-22. PubMed ID: 8957869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO adsorption on Cu-Pd alloy surfaces: ligand versus ensemble effects.
    Sakong S; Mosch C; Gross A
    Phys Chem Chem Phys; 2007 Jun; 9(18):2216-25. PubMed ID: 17487318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde.
    Jeroro E; Vohs JM
    J Am Chem Soc; 2008 Aug; 130(31):10199-207. PubMed ID: 18613679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach]+ and [ZnCl(bme-dach)]2Pd.
    de Paula QA; Liu Q; Almaraz E; Denny JA; Mangrum JB; Bhuvanesh N; Darensbourg MY; Farrell NP
    Dalton Trans; 2009 Dec; (48):10896-903. PubMed ID: 20023920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.