These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 21082235)
1. Identification of CD133(-)/telomerase(low) progenitor cells in glioblastoma-derived cancer stem cell lines. Beier F; Beier CP; Aschenbrenner I; Hildebrandt GC; Brümmendorf TH; Beier D Cell Mol Neurobiol; 2011 Apr; 31(3):337-43. PubMed ID: 21082235 [TBL] [Abstract][Full Text] [Related]
2. Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression. Gambelli F; Sasdelli F; Manini I; Gambarana C; Oliveri G; Miracco C; Sorrentino V Cell Biol Int; 2012 Jan; 36(1):29-38. PubMed ID: 21916848 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin. Lottaz C; Beier D; Meyer K; Kumar P; Hermann A; Schwarz J; Junker M; Oefner PJ; Bogdahn U; Wischhusen J; Spang R; Storch A; Beier CP Cancer Res; 2010 Mar; 70(5):2030-40. PubMed ID: 20145155 [TBL] [Abstract][Full Text] [Related]
4. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Zhu X; Prasad S; Gaedicke S; Hettich M; Firat E; Niedermann G Oncotarget; 2015 Jan; 6(1):171-84. PubMed ID: 25426558 [TBL] [Abstract][Full Text] [Related]
5. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. Liu Q; Nguyen DH; Dong Q; Shitaku P; Chung K; Liu OY; Tso JL; Liu JY; Konkankit V; Cloughesy TF; Mischel PS; Lane TF; Liau LM; Nelson SF; Tso CL J Neurooncol; 2009 Aug; 94(1):1-19. PubMed ID: 19468690 [TBL] [Abstract][Full Text] [Related]
6. CD133 is essential for glioblastoma stem cell maintenance. Brescia P; Ortensi B; Fornasari L; Levi D; Broggi G; Pelicci G Stem Cells; 2013 May; 31(5):857-69. PubMed ID: 23307586 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneous phenotype of human glioblastoma: in vitro study. Denysenko T; Gennero L; Juenemann C; Morra I; Masperi P; Ceroni V; Pragliola A; Ponzetto A; Melcarne A Cell Biochem Funct; 2014 Mar; 32(2):164-76. PubMed ID: 23836332 [TBL] [Abstract][Full Text] [Related]
8. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Beier D; Hau P; Proescholdt M; Lohmeier A; Wischhusen J; Oefner PJ; Aigner L; Brawanski A; Bogdahn U; Beier CP Cancer Res; 2007 May; 67(9):4010-5. PubMed ID: 17483311 [TBL] [Abstract][Full Text] [Related]
9. Side population rather than CD133(+) cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells. Zhou J; Wang H; Cannon V; Wolcott KM; Song H; Yates C Mol Cancer; 2011 Sep; 10():112. PubMed ID: 21917149 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Park EK; Lee JC; Park JW; Bang SY; Yi SA; Kim BK; Park JH; Kwon SH; You JS; Nam SW; Cho EJ; Han JW Cell Death Dis; 2015 Nov; 6(11):e1964. PubMed ID: 26539911 [TBL] [Abstract][Full Text] [Related]
11. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Silva IA; Bai S; McLean K; Yang K; Griffith K; Thomas D; Ginestier C; Johnston C; Kueck A; Reynolds RK; Wicha MS; Buckanovich RJ Cancer Res; 2011 Jun; 71(11):3991-4001. PubMed ID: 21498635 [TBL] [Abstract][Full Text] [Related]
12. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. Bidlingmaier S; Zhu X; Liu B J Mol Med (Berl); 2008 Sep; 86(9):1025-32. PubMed ID: 18535813 [TBL] [Abstract][Full Text] [Related]
13. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Ma S; Chan KW; Lee TK; Tang KH; Wo JY; Zheng BJ; Guan XY Mol Cancer Res; 2008 Jul; 6(7):1146-53. PubMed ID: 18644979 [TBL] [Abstract][Full Text] [Related]
14. A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Yan X; Ma L; Yi D; Yoon JG; Diercks A; Foltz G; Price ND; Hood LE; Tian Q Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1591-6. PubMed ID: 21220328 [TBL] [Abstract][Full Text] [Related]
15. CD133 as a marker for regulation and potential for targeted therapies in glioblastoma multiforme. Choy W; Nagasawa DT; Trang A; Thill K; Spasic M; Yang I Neurosurg Clin N Am; 2012 Jul; 23(3):391-405. PubMed ID: 22748652 [TBL] [Abstract][Full Text] [Related]
16. A2B5 cells from human glioblastoma have cancer stem cell properties. Tchoghandjian A; Baeza N; Colin C; Cayre M; Metellus P; Beclin C; Ouafik L; Figarella-Branger D Brain Pathol; 2010 Jan; 20(1):211-21. PubMed ID: 19243384 [TBL] [Abstract][Full Text] [Related]
17. Glioblastoma cancer stem cells--from concept to clinical application. Stopschinski BE; Beier CP; Beier D Cancer Lett; 2013 Sep; 338(1):32-40. PubMed ID: 22668828 [TBL] [Abstract][Full Text] [Related]
18. Partial biological characterization of cancer stem-like cell line (WJ(2)) of human glioblastoma multiforme. Wang J; Wang X; Jiang S; Lin P; Zhang J; Wu Y; Xiong Z; Ren JJ; Yang H Cell Mol Neurobiol; 2008 Nov; 28(7):991-1003. PubMed ID: 18350379 [TBL] [Abstract][Full Text] [Related]
19. Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Annabi B; Lachambre MP; Plouffe K; Sartelet H; Béliveau R Mol Carcinog; 2009 Oct; 48(10):910-9. PubMed ID: 19326372 [TBL] [Abstract][Full Text] [Related]
20. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Skubitz AP; Taras EP; Boylan KL; Waldron NN; Oh S; Panoskaltsis-Mortari A; Vallera DA Gynecol Oncol; 2013 Sep; 130(3):579-87. PubMed ID: 23721800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]