These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 21082332)
1. Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Hong SH; Ryu H; Kim J; Cho KS Biodegradation; 2011 Jun; 22(3):593-601. PubMed ID: 21082332 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. Koo SY; Cho KS J Microbiol Biotechnol; 2009 Nov; 19(11):1431-8. PubMed ID: 19996698 [TBL] [Abstract][Full Text] [Related]
3. Effect of Novosphingobium sp. CuT1 inoculation on the rhizoremediation of heavy metal- and diesel-contaminated soil planted with tall fescue. Lee SY; Lee YY; Cho KS Environ Sci Pollut Res Int; 2023 Feb; 30(6):16612-16625. PubMed ID: 36184709 [TBL] [Abstract][Full Text] [Related]
4. Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil. Chen YA; Grace Liu PW; Whang LM; Wu YJ; Cheng SS J Biosci Bioeng; 2020 May; 129(5):603-612. PubMed ID: 31992527 [TBL] [Abstract][Full Text] [Related]
5. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Barrutia O; Garbisu C; Epelde L; Sampedro MC; Goicolea MA; Becerril JM Sci Total Environ; 2011 Sep; 409(19):4087-93. PubMed ID: 21741073 [TBL] [Abstract][Full Text] [Related]
6. Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. Gunderson JJ; Knight JD; Van Rees KC J Environ Qual; 2007; 36(4):927-34. PubMed ID: 17526871 [TBL] [Abstract][Full Text] [Related]
7. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. Alvarez VM; Santos SC; Casella Rda C; Vital RL; Sebastin GV; Seldin L J Microbiol Biotechnol; 2008 Dec; 18(12):1966-74. PubMed ID: 19131701 [TBL] [Abstract][Full Text] [Related]
8. Molecular detection and phylogenetic characterization of Gordonia species in heavily oil-contaminated soils. Shen FT; Ho MJ; Huang HR; Arun AB; Rekha PD; Young CC Res Microbiol; 2008; 159(7-8):522-9. PubMed ID: 18722524 [TBL] [Abstract][Full Text] [Related]
9. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Kechavarzi C; Pettersson K; Leeds-Harrison P; Ritchie L; Ledin S Environ Pollut; 2007 Jan; 145(1):68-74. PubMed ID: 16733076 [TBL] [Abstract][Full Text] [Related]
10. [Isolation and identification of a PAHs-degrading strain Gordonia sp. He4 and its dynamics during bioremediation of phenanthrene polluted soil]. Liu L; Li XW; Liu SJ; Liu ZP Huan Jing Ke Xue; 2007 Mar; 28(3):617-22. PubMed ID: 17633644 [TBL] [Abstract][Full Text] [Related]
11. Effect of compost in phytoremediation of diesel-contaminated soils. Vouillamoz J; Milke MW Water Sci Technol; 2001; 43(2):291-5. PubMed ID: 11380193 [TBL] [Abstract][Full Text] [Related]
12. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Gaskin SE; Bentham RH Sci Total Environ; 2010 Aug; 408(17):3683-8. PubMed ID: 20569970 [TBL] [Abstract][Full Text] [Related]
13. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil. Kumar KV; Patra DD Int J Phytoremediation; 2013; 15(8):743-55. PubMed ID: 23819272 [TBL] [Abstract][Full Text] [Related]
14. Ex situ bioremediation of oil-contaminated soil. Lin TC; Pan PT; Cheng SS J Hazard Mater; 2010 Apr; 176(1-3):27-34. PubMed ID: 20053499 [TBL] [Abstract][Full Text] [Related]
15. Selection of bacteria and plant seeds for potential use in the remediation of diesel contaminated soils. Al-Ghazawi Z; Saadoun I; Al-Shak'ah A J Basic Microbiol; 2005; 45(4):251-6. PubMed ID: 16028197 [TBL] [Abstract][Full Text] [Related]
16. Inoculation effect of Pseudomonas sp. TF716 on N Kim JY; Cho KS Sci Rep; 2022 Jul; 12(1):13018. PubMed ID: 35906374 [TBL] [Abstract][Full Text] [Related]
17. The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleum contaminated soil. Zamani J; Hajabbasi MA; Alaie E; Sepehri M; Leuchtmann A; Schulin R Int J Phytoremediation; 2016; 18(3):278-87. PubMed ID: 26366627 [TBL] [Abstract][Full Text] [Related]
18. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
19. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917 [TBL] [Abstract][Full Text] [Related]
20. Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Wang Z; Xu Y; Zhao J; Li F; Gao D; Xing B J Hazard Mater; 2011 Jun; 190(1-3):677-85. PubMed ID: 21524845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]