These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21082412)

  • 1. Adipogenic differentiation of human adipose-derived stem cells on 3D silk scaffolds.
    Choi JH; Bellas E; Vunjak-Novakovic G; Kaplan DL
    Methods Mol Biol; 2011; 702():319-30. PubMed ID: 21082412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
    Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G
    Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering.
    Tytgat L; Kollert MR; Van Damme L; Thienpont H; Ottevaere H; Duda GN; Geissler S; Dubruel P; Van Vlierberghe S; Qazi TH
    Macromol Biosci; 2020 Apr; 20(4):e1900364. PubMed ID: 32077631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds.
    Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL
    Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering.
    Oh CH; Hong SJ; Jeong I; Yu HS; Jegal SH; Kim HW
    Tissue Eng Part C Methods; 2010 Aug; 16(4):561-71. PubMed ID: 19722827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adipose tissue engineering for soft tissue regeneration.
    Choi JH; Gimble JM; Lee K; Marra KG; Rubin JP; Yoo JJ; Vunjak-Novakovic G; Kaplan DL
    Tissue Eng Part B Rev; 2010 Aug; 16(4):413-26. PubMed ID: 20166810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long term perfusion system supporting adipogenesis.
    Abbott RD; Raja WK; Wang RY; Stinson JA; Glettig DL; Burke KA; Kaplan DL
    Methods; 2015 Aug; 84():84-9. PubMed ID: 25843606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells.
    Ding X; Zhu M; Xu B; Zhang J; Zhao Y; Ji S; Wang L; Wang L; Li X; Kong D; Ma X; Yang Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16696-705. PubMed ID: 25210952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro models for adipose tissue engineering with adipose-derived stem cells using different scaffolds of natural origin.
    Girandon L; Kregar-Velikonja N; Božikov K; Barlič A
    Folia Biol (Praha); 2011; 57(2):47-56. PubMed ID: 21631961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation.
    Tan QW; Zhang Y; Luo JC; Zhang D; Xiong BJ; Yang JQ; Xie HQ; Lv Q
    J Biomed Mater Res A; 2017 Jun; 105(6):1756-1764. PubMed ID: 28165664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization.
    Kayabolen A; Keskin D; Aykan A; Karslıoglu Y; Zor F; Tezcaner A
    Biomed Mater; 2017 Jun; 12(3):035007. PubMed ID: 28361795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds.
    Flynn LE; Prestwich GD; Semple JL; Woodhouse KA
    Biomaterials; 2008 Apr; 29(12):1862-71. PubMed ID: 18242690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds.
    Shi JG; Fu WJ; Wang XX; Xu YD; Li G; Hong BF; Wang Y; Du ZY; Zhang X
    J Biomed Mater Res A; 2012 Oct; 100(10):2612-22. PubMed ID: 22615210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering.
    Vuornos K; Björninen M; Talvitie E; Paakinaho K; Kellomäki M; Huhtala H; Miettinen S; Seppänen-Kaijansinkko R; Haimi S
    Tissue Eng Part A; 2016 Mar; 22(5-6):513-23. PubMed ID: 26919401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose tissue-derived stem cells display a proangiogenic phenotype on 3D scaffolds.
    Neofytou EA; Chang E; Patlola B; Joubert LM; Rajadas J; Gambhir SS; Cheng Z; Robbins RC; Beygui RE
    J Biomed Mater Res A; 2011 Sep; 98(3):383-93. PubMed ID: 21630430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems.
    Abbott RD; Wang RY; Reagan MR; Chen Y; Borowsky FE; Zieba A; Marra KG; Rubin JP; Ghobrial IM; Kaplan DL
    Adv Healthc Mater; 2016 Jul; 5(13):1667-77. PubMed ID: 27197588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
    Temple JP; Hutton DL; Hung BP; Huri PY; Cook CA; Kondragunta R; Jia X; Grayson WL
    J Biomed Mater Res A; 2014 Dec; 102(12):4317-25. PubMed ID: 24510413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-arginine and arginine ethyl ester enhance proliferation of endothelial cells and preadipocytes - how an arginine ethyl ester-releasing biomaterial could support endothelial cell growth in tissue engineering.
    Paul NE; Lösel R; Hemmrich K; Goy D; Pallua N; Klee D
    Biomed Mater Eng; 2015; 25(3):289-97. PubMed ID: 26407115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.