These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. Kim J; Choi KS; Kim Y; Lim KT; Seonwoo H; Park Y; Kim DH; Choung PH; Cho CS; Kim SY; Choung YH; Chung JH J Biomed Mater Res A; 2013 Dec; 101(12):3520-30. PubMed ID: 23613168 [TBL] [Abstract][Full Text] [Related]
43. The role of tauroursodeoxycholic acid on adipogenesis of human adipose-derived stem cells by modulation of ER stress. Cha BH; Kim JS; Ahn JC; Kim HC; Kim BS; Han DK; Park SG; Lee SH Biomaterials; 2014 Mar; 35(9):2851-8. PubMed ID: 24424209 [TBL] [Abstract][Full Text] [Related]
44. Sustainable three-dimensional tissue model of human adipose tissue. Bellas E; Marra KG; Kaplan DL Tissue Eng Part C Methods; 2013 Oct; 19(10):745-54. PubMed ID: 23373822 [TBL] [Abstract][Full Text] [Related]
45. Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels. Wittmann K; Storck K; Muhr C; Mayer H; Regn S; Staudenmaier R; Wiese H; Maier G; Bauer-Kreisel P; Blunk T J Tissue Eng Regen Med; 2016 Oct; 10(10):E409-E418. PubMed ID: 24170732 [TBL] [Abstract][Full Text] [Related]
46. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. Brown CF; Yan J; Han TT; Marecak DM; Amsden BG; Flynn LE Biomed Mater; 2015 Jul; 10(4):045010. PubMed ID: 26225549 [TBL] [Abstract][Full Text] [Related]
47. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Cengiz IF; Maia FR; da Silva Morais A; Silva-Correia J; Pereira H; Canadas RF; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM Biofabrication; 2020 Mar; 12(2):025028. PubMed ID: 32069441 [TBL] [Abstract][Full Text] [Related]
48. Implant for autologous soft tissue reconstruction using an adipose-derived stem cell-colonized alginate scaffold. Hirsch T; Laemmle C; Behr B; Lehnhardt M; Jacobsen F; Hoefer D; Kueckelhaus M J Plast Reconstr Aesthet Surg; 2018 Jan; 71(1):101-111. PubMed ID: 28899664 [TBL] [Abstract][Full Text] [Related]
49. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Qi D; Wu S; Kuss MA; Shi W; Chung S; Deegan PT; Kamenskiy A; He Y; Duan B Acta Biomater; 2018 Jul; 74():131-142. PubMed ID: 29842971 [TBL] [Abstract][Full Text] [Related]
50. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration. Xu FT; Liang ZJ; Li HM; Peng QL; Huang MH; Li de Q; Liang YD; Chi GY; Li de H; Yu BC; Huang JR Oncotarget; 2016 Jun; 7(23):35390-403. PubMed ID: 27191987 [TBL] [Abstract][Full Text] [Related]
51. Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Rodrigues AI; Gomes ME; Leonor IB; Reis RL Acta Biomater; 2012 Oct; 8(10):3765-76. PubMed ID: 22659174 [TBL] [Abstract][Full Text] [Related]
52. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. Gastaldi G; Asti A; Scaffino MF; Visai L; Saino E; Cometa AM; Benazzo F J Biomed Mater Res A; 2010 Sep; 94(3):790-9. PubMed ID: 20336739 [TBL] [Abstract][Full Text] [Related]
53. New approach to modification of poly (l-lactic acid) with nano-hydroxyapatite improving functionality of human adipose-derived stromal cells (hASCs) through increased viability and enhanced mitochondrial activity. Smieszek A; Marycz K; Szustakiewicz K; Kryszak B; Targonska S; Zawisza K; Watras A; Wiglusz RJ Mater Sci Eng C Mater Biol Appl; 2019 May; 98():213-226. PubMed ID: 30813022 [TBL] [Abstract][Full Text] [Related]
55. Adipogenic differentiation of scaffold-bound human adipose tissue-derived stem cells (hASC) for soft tissue engineering. Handel M; Hammer TR; Hoefer D Biomed Mater; 2012 Oct; 7(5):054107. PubMed ID: 22972360 [TBL] [Abstract][Full Text] [Related]
56. Gold nanoparticle-filled biodegradable photopolymer scaffolds induced muscle remodeling: in vitro and in vivo findings. Zsedenyi A; Farkas B; Abdelrasoul GN; Romano I; Gyukity-Sebestyen E; Nagy K; Harmati M; Dobra G; Kormondi S; Decsi G; Nemeth IB; Diaspro A; Brandi F; Beke S; Buzas K Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():625-630. PubMed ID: 28024631 [TBL] [Abstract][Full Text] [Related]
57. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366 [TBL] [Abstract][Full Text] [Related]
58. Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering. Lin CH; Hsia K; Tsai CH; Ma H; Lu JH; Tsay RY Biomed Mater; 2019 Jun; 14(4):045014. PubMed ID: 31108479 [TBL] [Abstract][Full Text] [Related]
59. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes. Zaragosi LE; Wdziekonski B; Fontaine C; Villageois P; Peraldi P; Dani C BMC Cell Biol; 2008 Feb; 9():11. PubMed ID: 18271953 [TBL] [Abstract][Full Text] [Related]
60. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Heydarkhan-Hagvall S; Schenke-Layland K; Yang JQ; Heydarkhan S; Xu Y; Zuk PA; MacLellan WR; Beygui RE Cells Tissues Organs; 2008; 187(4):263-74. PubMed ID: 18196894 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]