These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 21082461)
21. A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Natali AN; Pavan PG; Carniel EL; Dorow C Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953 [TBL] [Abstract][Full Text] [Related]
22. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. Tang CY; Zhang G; Tsui CP J Biomech; 2009 May; 42(7):865-72. PubMed ID: 19264310 [TBL] [Abstract][Full Text] [Related]
23. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938 [TBL] [Abstract][Full Text] [Related]
24. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects. Limbert G; Middleton J; Laizans J; Dobelis M; Knets I Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954 [TBL] [Abstract][Full Text] [Related]
25. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS. Vande Geest JP; Simon BR; Rigby PH; Newberg TP J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686 [TBL] [Abstract][Full Text] [Related]
26. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Martins JA J Biomech; 2009 Jun; 42(9):1301-6. PubMed ID: 19375709 [TBL] [Abstract][Full Text] [Related]
27. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model. Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267 [TBL] [Abstract][Full Text] [Related]
28. On a phenomenological model for active smooth muscle contraction. Schmitz A; Böl M J Biomech; 2011 Jul; 44(11):2090-5. PubMed ID: 21632055 [TBL] [Abstract][Full Text] [Related]
29. Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data. Kallemeyn N; Gandhi A; Kode S; Shivanna K; Smucker J; Grosland N Med Eng Phys; 2010 Jun; 32(5):482-9. PubMed ID: 20392660 [TBL] [Abstract][Full Text] [Related]
30. Creating and simulating skeletal muscle from the visible human data set. Teran J; Sifakis E; Blemker SS; Ng-Thow-Hing V; Lau C; Fedkiw R IEEE Trans Vis Comput Graph; 2005; 11(3):317-28. PubMed ID: 15868831 [TBL] [Abstract][Full Text] [Related]
31. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis. Hedenstierna S; Halldin P; Siegmund GP Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765 [TBL] [Abstract][Full Text] [Related]
32. The constitutive properties of the brain parenchyma Part 1. Strain energy approach. Kohandel M; Sivaloganathan S; Tenti G; Drake JM Med Eng Phys; 2006 Jun; 28(5):449-54. PubMed ID: 16257562 [TBL] [Abstract][Full Text] [Related]
33. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Klöppel T; Wall WA Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846 [TBL] [Abstract][Full Text] [Related]
34. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122 [TBL] [Abstract][Full Text] [Related]
35. Micromechanical modelling of skeletal muscles based on the finite element method. Böl M; Reese S Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146 [TBL] [Abstract][Full Text] [Related]
36. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436 [TBL] [Abstract][Full Text] [Related]
37. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. Merkx MA; van 't Veer M; Speelman L; Breeuwer M; Buth J; van de Vosse FN J Biomech; 2009 Oct; 42(14):2369-73. PubMed ID: 19665127 [TBL] [Abstract][Full Text] [Related]
38. Experimental validation of a finite element model of the temporomandibular joint. Devocht JW; Goel VK; Zeitler DL; Lew D J Oral Maxillofac Surg; 2001 Jul; 59(7):775-8. PubMed ID: 11429739 [TBL] [Abstract][Full Text] [Related]
39. A finite element analysis of diaphragmatic hernia repair on an animal model. de Cesare N; Trevisan C; Maghin E; Piccoli M; Pavan PG J Mech Behav Biomed Mater; 2018 Oct; 86():33-42. PubMed ID: 29933200 [TBL] [Abstract][Full Text] [Related]
40. Analysis of mechanical interaction between human gluteal soft tissue and body supports. Then C; Menger J; Benderoth G; Alizadeh M; Vogl TJ; Hübner F; Silber G Technol Health Care; 2008; 16(1):61-76. PubMed ID: 18334788 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]