These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21082461)

  • 41. Non-linear material models for tracheal smooth muscle tissue.
    Sarma PA; Pidaparti RM; Moulik PN; Meiss RA
    Biomed Mater Eng; 2003; 13(3):235-45. PubMed ID: 12883173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A structural constitutive model for the human lens capsule.
    Burd HJ
    Biomech Model Mechanobiol; 2009 Jun; 8(3):217-31. PubMed ID: 18622755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mesh development for a finite element model of the carotid artery.
    Gayzik FS; Tan JC; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():187-92. PubMed ID: 16817606
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite element modeling of the head skeleton with a new local quantitative assessment approach.
    Autuori B; Bruyère-Garnier K; Morestin F; Brunet M; Verriest JP
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1225-32. PubMed ID: 16830926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique. Application to the biomechanics of speech production.
    Gerard JM; Ohayon J; Luboz V; Perrier P; Payan Y
    Med Eng Phys; 2005 Dec; 27(10):884-92. PubMed ID: 16280251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The central and peripheral components of respiratory muscle fatigue during inspiratory resistive loading in cats].
    Aleksandrova NP; Isaev GG
    Fiziol Zh SSSR Im I M Sechenova; 1990 May; 76(5):658-67. PubMed ID: 2170200
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the derivation of passive 3D material parameters from 1D stress-strain data of hydrostats.
    Winkel B; Schleichardt A
    J Biomech; 2011 Jul; 44(11):2113-7. PubMed ID: 21696743
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Fatigue of the respiratory muscles].
    Aubier M
    Presse Med; 1984 Sep; 13(33):2009-12. PubMed ID: 6238298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone.
    Austman RL; Milner JS; Holdsworth DW; Dunning CE
    J Biomech; 2008 Nov; 41(15):3171-6. PubMed ID: 18922532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of different modeling strategies for the periodontal ligament on finite element simulation results.
    Hohmann A; Kober C; Young P; Dorow C; Geiger M; Boryor A; Sander FM; Sander C; Sander FG
    Am J Orthod Dentofacial Orthop; 2011 Jun; 139(6):775-83. PubMed ID: 21640884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implementation of a new constitutive model for abdominal muscles.
    Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM
    Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational simulation of human upper airway collapse using a pressure-/state-dependent model of genioglossal muscle contraction under laminar flow conditions.
    Huang Y; Malhotra A; White DP
    J Appl Physiol (1985); 2005 Sep; 99(3):1138-48. PubMed ID: 15831800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic modeling of lung tumor motion during respiration.
    Kyriakou E; McKenzie DR
    Phys Med Biol; 2011 May; 56(10):2999-3013. PubMed ID: 21508446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinematic modeling of single muscle fiber during diaphragm shortening.
    Kyckelhahn BA; Nason PB; Tidball JG; Boriek AM
    J Biomech; 2003 Mar; 36(3):457-61. PubMed ID: 12594994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biaxial constitutive relations for the passive canine diaphragm.
    Boriek AM; Kelly NG; Rodarte JR; Wilson TA
    J Appl Physiol (1985); 2000 Dec; 89(6):2187-90. PubMed ID: 11090566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of the muscular contraction on the abdominal biomechanics: a numerical investigation.
    Pavan PG; Todros S; Pachera P; Pianigiani S; Natali AN
    Comput Methods Biomech Biomed Engin; 2019 Feb; 22(2):139-148. PubMed ID: 30663341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.