These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 21083139)

  • 1. Challenges in applying chemometrics to LC-MS-based global metabolite profile data.
    Want E
    Bioanalysis; 2009 Jul; 1(4):805-19. PubMed ID: 21083139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing and analysis of GC/LC-MS-based metabolomics data.
    Want E; Masson P
    Methods Mol Biol; 2011; 708():277-98. PubMed ID: 21207297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review.
    Roux A; Lison D; Junot C; Heilier JF
    Clin Biochem; 2011 Jan; 44(1):119-35. PubMed ID: 20800591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform mass spectrometry for metabolome analysis.
    Junot C; Madalinski G; Tabet JC; Ezan E
    Analyst; 2010 Sep; 135(9):2203-19. PubMed ID: 20574587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample preparation methods for LC-MS-based global aqueous metabolite profiling.
    Beltran A; Samino S; Yanes O
    Methods Mol Biol; 2014; 1198():75-80. PubMed ID: 25270923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR and MS methods for metabonomics.
    Dieterle F; Riefke B; Schlotterbeck G; Ross A; Senn H; Amberg A
    Methods Mol Biol; 2011; 691():385-415. PubMed ID: 20972767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment.
    t'Kindt R; Morreel K; Deforce D; Boerjan W; Van Bocxlaer J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Nov; 877(29):3572-80. PubMed ID: 19762291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics.
    Beltran A; Suarez M; Rodríguez MA; Vinaixa M; Samino S; Arola L; Correig X; Yanes O
    Anal Chem; 2012 Jul; 84(14):5838-44. PubMed ID: 22697410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS).
    Chan EC; Koh PK; Mal M; Cheah PY; Eu KW; Backshall A; Cavill R; Nicholson JK; Keun HC
    J Proteome Res; 2009 Jan; 8(1):352-61. PubMed ID: 19063642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical and statistical approaches to metabolomics research.
    Issaq HJ; Van QN; Waybright TJ; Muschik GM; Veenstra TD
    J Sep Sci; 2009 Jul; 32(13):2183-99. PubMed ID: 19569098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance (NMR)-based drug metabolite profiling.
    Lenz EM
    Methods Mol Biol; 2011; 708():299-319. PubMed ID: 21207298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of zebrafish embryogenesis via DNA microarrays and multiplatform time course metabolomics studies.
    Soanes KH; Achenbach JC; Burton IW; Hui JP; Penny SL; Karakach TK
    J Proteome Res; 2011 Nov; 10(11):5102-17. PubMed ID: 21910437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in metabolite identification.
    Wishart DS
    Bioanalysis; 2011 Aug; 3(15):1769-82. PubMed ID: 21827274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome.
    Guo K; Li L
    Anal Chem; 2009 May; 81(10):3919-32. PubMed ID: 19309105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry-based technologies for high-throughput metabolomics.
    Han J; Datla R; Chan S; Borchers CH
    Bioanalysis; 2009 Dec; 1(9):1665-84. PubMed ID: 21083110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and developments in tandem mass spectrometry based clinical metabolomics.
    Ceglarek U; Leichtle A; Brügel M; Kortz L; Brauer R; Bresler K; Thiery J; Fiedler GM
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):266-71. PubMed ID: 19007853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap.
    Scheltema RA; Kamleh A; Wildridge D; Ebikeme C; Watson DG; Barrett MP; Jansen RC; Breitling R
    Proteomics; 2008 Nov; 8(22):4647-56. PubMed ID: 18937253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry: from proteomics to metabolomics and lipidomics.
    Griffiths WJ; Wang Y
    Chem Soc Rev; 2009 Jul; 38(7):1882-96. PubMed ID: 19551169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equating, or correction for between-block effects with application to body fluid LC-MS and NMR metabolomics data sets.
    Draisma HH; Reijmers TH; van der Kloet F; Bobeldijk-Pastorova I; Spies-Faber E; Vogels JT; Meulman JJ; Boomsma DI; van der Greef J; Hankemeier T
    Anal Chem; 2010 Feb; 82(3):1039-46. PubMed ID: 20052990
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 34.