These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21083325)

  • 1. Application of microfluidic technology to pancreatic islet research: first decade of endeavor.
    Wang Y; Lo JF; Mendoza-Elias JE; Adewola AF; Harvat TA; Kinzer KP; Lee D; Qi M; Eddington DT; Oberholzer J
    Bioanalysis; 2010 Oct; 2(10):1729-44. PubMed ID: 21083325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic perifusion and imaging device for multi-parametric islet function assessment.
    Adewola AF; Lee D; Harvat T; Mohammed J; Eddington DT; Oberholzer J; Wang Y
    Biomed Microdevices; 2010 Jun; 12(3):409-17. PubMed ID: 20300858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chapter 4: Combining microfluidics and quantitative fluorescence microscopy to examine pancreatic islet molecular physiology.
    Rocheleau JV; Piston DW
    Methods Cell Biol; 2008; 89():71-92. PubMed ID: 19118673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturized continuous flow reaction vessels: influence on chemical reactions.
    Brivio M; Verboom W; Reinhoudt DN
    Lab Chip; 2006 Mar; 6(3):329-44. PubMed ID: 16511615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of Langerhans islets by dielectrophoresis.
    Burgarella S; Merlo S; Figliuzzi M; Remuzzi A
    Electrophoresis; 2013 Apr; 34(7):1068-75. PubMed ID: 23161152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic cell culture systems for drug research.
    Wu MH; Huang SB; Lee GB
    Lab Chip; 2010 Apr; 10(8):939-56. PubMed ID: 20358102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macro-to-micro interfaces for microfluidic devices.
    Fredrickson CK; Fan ZH
    Lab Chip; 2004 Dec; 4(6):526-33. PubMed ID: 15570361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities.
    Castiello FR; Heileman K; Tabrizian M
    Lab Chip; 2016 Feb; 16(3):409-31. PubMed ID: 26732665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-parametric islet perifusion system within a microfluidic perifusion device.
    Adewola AF; Wang Y; Harvat T; Eddington DT; Lee D; Oberholzer J
    J Vis Exp; 2010 Jan; (35):. PubMed ID: 20104201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of cell and particle trapping in microfluidic systems.
    Nilsson J; Evander M; Hammarström B; Laurell T
    Anal Chim Acta; 2009 Sep; 649(2):141-57. PubMed ID: 19699390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device.
    Wang Y; Lee D; Zhang L; Jeon H; Mendoza-Elias JE; Harvat TA; Hassan SZ; Zhou A; Eddington DT; Oberholzer J
    Biomed Microdevices; 2012 Apr; 14(2):419-26. PubMed ID: 22252566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic analysis of bone marrow mesenchymal stem cells migrating to pancreatic islets using coculture microfluidic chips: An accelerated migrating rate and better survival of pancreatic islets were revealed.
    Lin P; Chen L; Li D; Yang N; Sun Y; Xu Y
    Neuro Endocrinol Lett; 2009; 30(2):204-8. PubMed ID: 19675523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays.
    Huang SB; Wang SS; Hsieh CH; Lin YC; Lai CS; Wu MH
    Lab Chip; 2013 Mar; 13(6):1133-43. PubMed ID: 23353927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.