These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21083975)
1. Genipin-cross-linked electrospun collagen fibers. Mekhail M; Wong KK; Padavan DT; Wu Y; O'Gorman DB; Wan W J Biomater Sci Polym Ed; 2011; 22(17):2241-59. PubMed ID: 21083975 [TBL] [Abstract][Full Text] [Related]
2. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Yan LP; Wang YJ; Ren L; Wu G; Caridade SG; Fan JB; Wang LY; Ji PH; Oliveira JM; Oliveira JT; Mano JF; Reis RL J Biomed Mater Res A; 2010 Nov; 95(2):465-75. PubMed ID: 20648541 [TBL] [Abstract][Full Text] [Related]
5. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation. Zhang X; Chen X; Yang T; Zhang N; Dong L; Ma S; Liu X; Zhou M; Li B Cell Tissue Bank; 2014 Dec; 15(4):531-41. PubMed ID: 24442821 [TBL] [Abstract][Full Text] [Related]
6. Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ Chen D; Zhu T; Fu W; Zhang H Int J Nanomedicine; 2019; 14():2127-2144. PubMed ID: 30988613 [TBL] [Abstract][Full Text] [Related]
7. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Panzavolta S; Gioffrè M; Focarete ML; Gualandi C; Foroni L; Bigi A Acta Biomater; 2011 Apr; 7(4):1702-9. PubMed ID: 21095244 [TBL] [Abstract][Full Text] [Related]
8. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds. Satyam A; Subramanian GS; Raghunath M; Pandit A; Zeugolis DI J Tissue Eng Regen Med; 2014 Mar; 8(3):233-41. PubMed ID: 22552937 [TBL] [Abstract][Full Text] [Related]
9. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility. Norowski PA; Fujiwara T; Clem WC; Adatrow PC; Eckstein EC; Haggard WO; Bumgardner JD J Tissue Eng Regen Med; 2015 May; 9(5):577-83. PubMed ID: 23166109 [TBL] [Abstract][Full Text] [Related]
10. Dehydrothermal crosslinking of electrospun collagen. Drexler JW; Powell HM Tissue Eng Part C Methods; 2011 Jan; 17(1):9-17. PubMed ID: 20594112 [TBL] [Abstract][Full Text] [Related]
11. Cell growth on in situ photo-cross-linked electrospun acrylated cellulose acetate butyrate. Çakmakçı E; Güngör A; Kayaman-Apohan N; Kuruca SE; Çetin MB; Dar KA J Biomater Sci Polym Ed; 2012; 23(7):887-99. PubMed ID: 21457618 [TBL] [Abstract][Full Text] [Related]
12. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence. Sundararaghavan HG; Monteiro GA; Lapin NA; Chabal YJ; Miksan JR; Shreiber DI J Biomed Mater Res A; 2008 Nov; 87(2):308-20. PubMed ID: 18181104 [TBL] [Abstract][Full Text] [Related]
13. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Jiang Q; Reddy N; Yang Y Acta Biomater; 2010 Oct; 6(10):4042-51. PubMed ID: 20438870 [TBL] [Abstract][Full Text] [Related]
14. Dual-functional electrospun poly(2-hydroxyethyl methacrylate). Zhang B; Lalani R; Cheng F; Liu Q; Liu L J Biomed Mater Res A; 2011 Dec; 99(3):455-66. PubMed ID: 21887741 [TBL] [Abstract][Full Text] [Related]
15. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility. Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187 [TBL] [Abstract][Full Text] [Related]
16. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. Huang GP; Shanmugasundaram S; Masih P; Pandya D; Amara S; Collins G; Arinzeh TL J Biomed Mater Res A; 2015 Feb; 103(2):762-71. PubMed ID: 24828818 [TBL] [Abstract][Full Text] [Related]
17. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189 [TBL] [Abstract][Full Text] [Related]
18. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Suchý T; Šupová M; Sauerová P; Verdánová M; Sucharda Z; Rýglová Š; Žaloudková M; Sedláček R; Kalbáčová MH Biomed Mater; 2015 Nov; 10(6):065008. PubMed ID: 26586611 [TBL] [Abstract][Full Text] [Related]
19. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration. Nagiah N; Madhavi L; Anitha R; Anandan C; Srinivasan NT; Sivagnanam UT Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4444-52. PubMed ID: 23910364 [TBL] [Abstract][Full Text] [Related]
20. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation. Zhang Y; Zhang X; Xu L; Wei S; Zhai M J Biomater Sci Polym Ed; 2015; 26(3):162-80. PubMed ID: 25431991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]