These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 2108407)

  • 1. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of superior laryngeal nerve stimulation on phonation in an in vivo canine model.
    Berke GS; Moore DM; Gerratt BR; Hanson DG; Natividad M
    Am J Otolaryngol; 1989; 10(3):181-7. PubMed ID: 2742054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in glottal area associated with increasing airflow.
    Sercarz JA; Berke GS; Bielamowicz S; Kreiman J; Ye M; Green DC
    Ann Otol Rhinol Laryngol; 1994 Feb; 103(2):139-44. PubMed ID: 8311390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Reconstruction of Phonatory Glottal Shape and Volume: Effects of Neuromuscular Activation.
    Reddy NK; Schlegel P; Lee Y; Chhetri DK
    Laryngoscope; 2023 Feb; 133(2):357-365. PubMed ID: 35633189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of Vocal Fold Medial Surface 3D Trajectories: Effects of Neuromuscular Stimulation and Airflow.
    Schlegel P; Chung HR; Döllinger M; Chhetri DK
    Laryngoscope; 2024 Mar; 134(3):1249-1257. PubMed ID: 37672673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.
    Chhetri DK; Neubauer J; Sofer E
    Laryngoscope; 2014 Nov; 124(11):2544-50. PubMed ID: 24913182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tension, stiffness, and airflow on laryngeal resistance in the in vivo canine model.
    Bielamowicz S; Berke GS; Kreiman J; Sercarz JA; Green DC; Gerratt BR
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):761-8. PubMed ID: 8215095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of recurrent laryngeal nerve stimulation on phonation in an in vivo canine model.
    Berke GS; Moore DM; Gerratt BR; Hanson DG; Bell TS; Natividad M
    Laryngoscope; 1989 Sep; 99(9):977-82. PubMed ID: 2770387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restraining mechanisms in regulating glottal closure during phonation.
    Zhang Z
    J Acoust Soc Am; 2011 Dec; 130(6):4010-9. PubMed ID: 22225055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glottal open quotient in singing: measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency.
    Henrich N; D'Alessandro C; Doval B; Castellengo M
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1417-30. PubMed ID: 15807029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glottographic analysis of phonation in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):396-402. PubMed ID: 2337319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.