BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 21084297)

  • 1. Distinct roles of the active-site Mg2+ ligands, Asp882 and Asp705, of DNA polymerase I (Klenow fragment) during the prechemistry conformational transitions.
    Bermek O; Grindley ND; Joyce CM
    J Biol Chem; 2011 Feb; 286(5):3755-66. PubMed ID: 21084297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity.
    Joyce CM; Potapova O; Delucia AM; Huang X; Basu VP; Grindley ND
    Biochemistry; 2008 Jun; 47(23):6103-16. PubMed ID: 18473481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prechemistry nucleotide selection checkpoints in the reaction pathway of DNA polymerase I and roles of glu710 and tyr766.
    Bermek O; Grindley ND; Joyce CM
    Biochemistry; 2013 Sep; 52(36):6258-74. PubMed ID: 23937394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.
    Astatke M; Grindley ND; Joyce CM
    J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly.
    Yang L; Arora K; Beard WA; Wilson SH; Schlick T
    J Am Chem Soc; 2004 Jul; 126(27):8441-53. PubMed ID: 15238001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Closing Mechanism of DNA Polymerase I at Atomic Resolution.
    Miller BR; Beese LS; Parish CA; Wu EY
    Structure; 2015 Sep; 23(9):1609-1620. PubMed ID: 26211612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conformational change in E. coli DNA polymerase I (Klenow fragment) is induced in the presence of a dNTP complementary to the template base in the active site.
    Dzantiev L; Romano LJ
    Biochemistry; 2000 Jan; 39(2):356-61. PubMed ID: 10630996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment).
    Astatke M; Grindley ND; Joyce CM
    J Biol Chem; 1995 Jan; 270(4):1945-54. PubMed ID: 7829532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of active-site carboxylates of Escherichia coli DNA polymerase I (Klenow fragment) in the formation of a prepolymerase ternary complex.
    Gangurde R; Modak MJ
    Biochemistry; 2002 Dec; 41(49):14552-9. PubMed ID: 12463755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.
    Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J
    Biochemistry; 1996 Oct; 35(39):12762-77. PubMed ID: 8841119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dNTP-dependent conformational transitions in the fingers subdomain of Klentaq1 DNA polymerase: insights into the role of the "nucleotide-binding" state.
    Rothwell PJ; Allen WJ; Sisamakis E; Kalinin S; Felekyan S; Widengren J; Waksman G; Seidel CA
    J Biol Chem; 2013 May; 288(19):13575-91. PubMed ID: 23525110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational transitions in DNA polymerase I revealed by single-molecule FRET.
    Santoso Y; Joyce CM; Potapova O; Le Reste L; Hohlbein J; Torella JP; Grindley ND; Kapanidis AN
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):715-20. PubMed ID: 20080740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic mechanism of active site assembly and chemical catalysis of DNA polymerase β.
    Balbo PB; Wang EC; Tsai MD
    Biochemistry; 2011 Nov; 50(45):9865-75. PubMed ID: 22010960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli.
    Polesky AH; Dahlberg ME; Benkovic SJ; Grindley ND; Joyce CM
    J Biol Chem; 1992 Apr; 267(12):8417-28. PubMed ID: 1569092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex.
    Wang M; Lee HR; Konigsberg W
    Biochemistry; 2009 Mar; 48(10):2075-86. PubMed ID: 19228037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerase beta: multiple conformational changes in the mechanism of catalysis.
    Zhong X; Patel SS; Werneburg BG; Tsai MD
    Biochemistry; 1997 Sep; 36(39):11891-900. PubMed ID: 9305982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reopening rate of the fingers domain is a determinant of base selectivity for RB69 DNA polymerase.
    Lee HR; Wang M; Konigsberg W
    Biochemistry; 2009 Mar; 48(10):2087-98. PubMed ID: 19228036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.