These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21084339)

  • 1. Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario.
    Hooker G; Ellner SP; Roditi Lde V; Earn DJ
    J R Soc Interface; 2011 Jul; 8(60):961-74. PubMed ID: 21084339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics.
    Martinez-Bakker M; Bakker KM; King AA; Rohani P
    Proc Biol Sci; 2014 May; 281(1783):20132438. PubMed ID: 24695423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonlinear programming approach for estimation of transmission parameters in childhood infectious disease using a continuous time model.
    Word DP; Cummings DA; Burke DS; Iamsirithaworn S; Laird CD
    J R Soc Interface; 2012 Aug; 9(73):1983-97. PubMed ID: 22337634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal transmission dynamics of measles in China.
    Huang J; Ruan S; Wu X; Zhou X
    Theory Biosci; 2018 Nov; 137(2):185-195. PubMed ID: 30259352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
    He D; Ionides EL; King AA
    J R Soc Interface; 2010 Feb; 7(43):271-83. PubMed ID: 19535416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical inference and model selection for the 1861 Hagelloch measles epidemic.
    Neal PJ; Roberts GO
    Biostatistics; 2004 Apr; 5(2):249-61. PubMed ID: 15054029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing stochasticity through enhanced seasonality in measles epidemics.
    Mantilla-Beniers NB; Bjørnstad ON; Grenfell BT; Rohani P
    J R Soc Interface; 2010 May; 7(46):727-39. PubMed ID: 19828508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the impact of subclinical measles transmission in vaccinated populations with waning immunity.
    Mossong J; Nokes DJ; Edmunds WJ; Cox MJ; Ratnam S; Muller CP
    Am J Epidemiol; 1999 Dec; 150(11):1238-49. PubMed ID: 10588085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamics of measles in sub-Saharan Africa.
    Ferrari MJ; Grais RF; Bharti N; Conlan AJ; Bjørnstad ON; Wolfson LJ; Guerin PJ; Djibo A; Grenfell BT
    Nature; 2008 Feb; 451(7179):679-84. PubMed ID: 18256664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Inverse Method for a Childhood Infectious Disease Model with Its Application to Pre-vaccination and Post-vaccination Measles Data.
    Kong JD; Jin C; Wang H
    Bull Math Biol; 2015 Dec; 77(12):2231-63. PubMed ID: 26582359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturated treatments and measles resurgence episodes in South Africa: a possible linkage.
    Lacitignola D
    Math Biosci Eng; 2013 Aug; 10(4):1135-57. PubMed ID: 23906205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integer Versus Fractional Order SEIR Deterministic and Stochastic Models of Measles.
    Islam MR; Peace A; Medina D; Oraby T
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32197541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London.
    Cauchemez S; Ferguson NM
    J R Soc Interface; 2008 Aug; 5(25):885-97. PubMed ID: 18174112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease elimination and re-emergence in differential-equation models.
    Greenhalgh S; Galvani AP; Medlock J
    J Theor Biol; 2015 Dec; 387():174-80. PubMed ID: 26471072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the basic reproduction number of measles during an outbreak in a partially vaccinated population.
    Mossong J; Muller CP
    Epidemiol Infect; 2000 Apr; 124(2):273-8. PubMed ID: 10813153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of measles epidemics in China (1951-2004) and implications for elimination: A case study of three key locations.
    Yang W; Li J; Shaman J
    PLoS Comput Biol; 2019 Feb; 15(2):e1006806. PubMed ID: 30716080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of measles vaccine efficacy and critical vaccination coverage in a highly vaccinated population.
    van Boven M; Kretzschmar M; Wallinga J; O'Neill PD; Wichmann O; Hahné S
    J R Soc Interface; 2010 Nov; 7(52):1537-44. PubMed ID: 20392713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaos and complexity in measles models: a comparative numerical study.
    Bolker B
    IMA J Math Appl Med Biol; 1993; 10(2):83-95. PubMed ID: 8370994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of measles dynamics in a vaccinated population.
    Wallinga J; Teunis P; Kretzschmar M
    Vaccine; 2003 Jun; 21(19-20):2643-50. PubMed ID: 12744901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.