BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 21084676)

  • 21. Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats.
    Furuyashiki T; Ogawa R; Nakayama Y; Honda K; Kamisoyama H; Takata H; Yasuda M; Kuriki T; Ashida H
    Nutr Res; 2013 Sep; 33(9):743-52. PubMed ID: 24034574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity.
    Naples SP; Borengasser SJ; Rector RS; Uptergrove GM; Morris EM; Mikus CR; Koch LG; Britton SL; Ibdah JA; Thyfault JP
    Appl Physiol Nutr Metab; 2010 Apr; 35(2):151-62. PubMed ID: 20383225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart.
    Young ME; Guthrie PH; Razeghi P; Leighton B; Abbasi S; Patil S; Youker KA; Taegtmeyer H
    Diabetes; 2002 Aug; 51(8):2587-95. PubMed ID: 12145175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced adiposity in bitter melon (Momordica charantia)-fed rats is associated with increased lipid oxidative enzyme activities and uncoupling protein expression.
    Chan LL; Chen Q; Go AG; Lam EK; Li ET
    J Nutr; 2005 Nov; 135(11):2517-23. PubMed ID: 16251604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skeletal muscle heterogeneity in fasting-induced upregulation of genes encoding UCP2, UCP3, PPARgamma and key enzymes of lipid oxidation.
    Samec S; Seydoux J; Russell AP; Montani JP; Dulloo AG
    Pflugers Arch; 2002 Oct; 445(1):80-6. PubMed ID: 12397391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible role of avian uncoupling protein in down-regulating mitochondrial superoxide production in skeletal muscle of fasted chickens.
    Abe T; Mujahid A; Sato K; Akiba Y; Toyomizu M
    FEBS Lett; 2006 Sep; 580(20):4815-22. PubMed ID: 16904672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.
    Roe DS; Yang BZ; Vianey-Saban C; Struys E; Sweetman L; Roe CR
    Mol Genet Metab; 2006 Jan; 87(1):40-7. PubMed ID: 16297647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PGC-1
    Gudiksen A; Pilegaard H
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28400503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals.
    Boyle KE; Canham JP; Consitt LA; Zheng D; Koves TR; Gavin TP; Holbert D; Neufer PD; Ilkayeva O; Muoio DM; Houmard JA
    J Clin Endocrinol Metab; 2011 Mar; 96(3):775-81. PubMed ID: 21190973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.
    Terada S; Tabata I; Higuchi M
    Jpn J Physiol; 2004 Feb; 54(1):47-52. PubMed ID: 15040848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced plasma free fatty acid availability during exercise: effect on gene expression.
    Tunstall RJ; McAinch AJ; Hargreaves M; van Loon LJ; Cameron-Smith D
    Eur J Appl Physiol; 2007 Mar; 99(5):485-93. PubMed ID: 17186295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PGC-1alpha increases PDH content but does not change acute PDH regulation in mouse skeletal muscle.
    Kiilerich K; Adser H; Jakobsen AH; Pedersen PA; Hardie DG; Wojtaszewski JF; Pilegaard H
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1350-9. PubMed ID: 20720174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements.
    Song S; Attia RR; Connaughton S; Niesen MI; Ness GC; Elam MB; Hori RT; Cook GA; Park EA
    Mol Cell Endocrinol; 2010 Aug; 325(1-2):54-63. PubMed ID: 20638986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle.
    Cameron-Smith D; Burke LM; Angus DJ; Tunstall RJ; Cox GR; Bonen A; Hawley JA; Hargreaves M
    Am J Clin Nutr; 2003 Feb; 77(2):313-8. PubMed ID: 12540388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of L-aminocarnitine, an inhibitor of fatty acid oxidation.
    Chegary M; Te Brinke H; Doolaard M; Ijlst L; Wijburg FA; Wanders RJ; Houten SM
    Mol Genet Metab; 2008 Apr; 93(4):403-10. PubMed ID: 18077198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer.
    Wu H; Liu B; Chen Z; Li G; Zhang Z
    Cell Death Dis; 2020 Apr; 11(4):233. PubMed ID: 32300102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide sequence of the promoter and fadB gene of the fadBA operon and primary structure of the multifunctional fatty acid oxidation protein from Escherichia coli.
    Yang XY; Schulz H; Elzinga M; Yang SY
    Biochemistry; 1991 Jul; 30(27):6788-95. PubMed ID: 1712230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: A target to modulate cardiovascular risk?
    Dozio E; Vianello E; Malavazos AE; Tacchini L; Schmitz G; Iacobellis G; Corsi Romanelli MM
    Int J Cardiol; 2019 Oct; 292():218-224. PubMed ID: 31023563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.