BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21084682)

  • 1. Neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus.
    Tremblay C; Berret E; Henry M; Nehmé B; Nadeau L; Mouginot D
    J Neurophysiol; 2011 Feb; 105(2):650-60. PubMed ID: 21084682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat.
    Grob M; Drolet G; Mouginot D
    J Neurosci; 2004 Apr; 24(16):3974-84. PubMed ID: 15102913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of central Na+ detection requires the cooperative action of the NaX channel and α1 Isoform of Na+/K+-ATPase in the Na+-sensor neuronal population.
    Berret E; Nehmé B; Henry M; Toth K; Drolet G; Mouginot D
    J Neurosci; 2013 Feb; 33(7):3067-78. PubMed ID: 23407962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple episodes of sodium depletion in the rat: a remodeling of the electrical properties of median preoptic nucleus neurons.
    Voisin AN; Mouginot D; Drolet G
    Eur J Neurosci; 2013 Sep; 38(5):2730-41. PubMed ID: 23738856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic mu-opioid receptor response in the median preoptic nucleus is altered by a systemic sodium challenge in rats.
    Henry M; Drolet G; Mouginot D
    Eur J Neurosci; 2008 Mar; 27(5):1197-209. PubMed ID: 18364037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensinergic pathway through the median preoptic nucleus in the control of oxytocin secretion and water and sodium intake.
    de Lucca Junior W; Franci CR
    Brain Res; 2004 Jul; 1014(1-2):236-43. PubMed ID: 15213008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain.
    Noda M
    Exp Physiol; 2007 May; 92(3):513-22. PubMed ID: 17350991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic properties of the sodium sensor neurons in the rat median preoptic nucleus.
    Voisin AN; Drolet G; Mouginot D
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(8):R834-42. PubMed ID: 22874426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents.
    Kolaj M; Coderre E; Renaud LP
    Neuroscience; 2008 Sep; 155(4):1212-20. PubMed ID: 18674591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral hypothalamus lesions influences water and salt intake, and sodium and urine excretion, and arterial blood pressure induced by L-NAME and FK 409 injections into median preoptic nucleus in conscious rats.
    Abrão Saad W; Guarda IF; Camargo LA; Garcia G; Gutierrez LI; Abrão Saad W; Simões S; Saad Guarda R
    Life Sci; 2004 Jun; 75(6):685-97. PubMed ID: 15172178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons.
    Gao J; Wu LJ; Xu L; Xu TL
    Brain Res; 2004 Aug; 1017(1-2):197-207. PubMed ID: 15261115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of acid-sensing ion channels in cultured neurons of rat inferior colliculus.
    Zhang M; Gong N; Lu YG; Jia NL; Xu TL; Chen L
    Neuroscience; 2008 Jun; 154(2):461-72. PubMed ID: 18456416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenged sodium balance and expression of angiotensin type 1A receptor mRNA in the hypothalamus of Wistar and Dahl rat strains.
    Mouginot D; Laforest S; Drolet G
    Regul Pept; 2007 Jul; 142(1-2):44-51. PubMed ID: 17350697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials.
    Perez MF; White FJ; Hu XT
    J Neurophysiol; 2006 Nov; 96(5):2217-28. PubMed ID: 16885524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in electrophysiological properties of angiotensinergic pathways from the subfornical organ to the median preoptic nucleus between normotensive Wistar-Kyoto and spontaneously hypertensive rats.
    Tanaka J; Yamamuro Y; Saito H; Matsuda M; Nomura M
    Exp Neurol; 1995 Aug; 134(2):192-8. PubMed ID: 7556538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrodotoxin-sensitive and -resistant Na+ channel currents in subsets of small sensory neurons of rats.
    Wu ZZ; Pan HL
    Brain Res; 2004 Dec; 1029(2):251-8. PubMed ID: 15542080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sodium "leak" has finally been plugged.
    Snutch TP; Monteil A
    Neuron; 2007 May; 54(4):505-7. PubMed ID: 17521564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer.
    Grimes JA; Djamgoz MB
    J Cell Physiol; 1998 Apr; 175(1):50-8. PubMed ID: 9491780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II induces calcium-dependent rhythmic activity in a subpopulation of rat hypothalamic median preoptic nucleus neurons.
    Spanswick D; Renaud LP
    J Neurophysiol; 2005 Apr; 93(4):1970-6. PubMed ID: 15774710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain.
    Noda M
    Neuroscientist; 2006 Feb; 12(1):80-91. PubMed ID: 16394195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.