These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 21084682)
1. Neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus. Tremblay C; Berret E; Henry M; Nehmé B; Nadeau L; Mouginot D J Neurophysiol; 2011 Feb; 105(2):650-60. PubMed ID: 21084682 [TBL] [Abstract][Full Text] [Related]
2. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. Grob M; Drolet G; Mouginot D J Neurosci; 2004 Apr; 24(16):3974-84. PubMed ID: 15102913 [TBL] [Abstract][Full Text] [Related]
3. Regulation of central Na+ detection requires the cooperative action of the NaX channel and α1 Isoform of Na+/K+-ATPase in the Na+-sensor neuronal population. Berret E; Nehmé B; Henry M; Toth K; Drolet G; Mouginot D J Neurosci; 2013 Feb; 33(7):3067-78. PubMed ID: 23407962 [TBL] [Abstract][Full Text] [Related]
4. Multiple episodes of sodium depletion in the rat: a remodeling of the electrical properties of median preoptic nucleus neurons. Voisin AN; Mouginot D; Drolet G Eur J Neurosci; 2013 Sep; 38(5):2730-41. PubMed ID: 23738856 [TBL] [Abstract][Full Text] [Related]
5. Postsynaptic mu-opioid receptor response in the median preoptic nucleus is altered by a systemic sodium challenge in rats. Henry M; Drolet G; Mouginot D Eur J Neurosci; 2008 Mar; 27(5):1197-209. PubMed ID: 18364037 [TBL] [Abstract][Full Text] [Related]
6. Angiotensinergic pathway through the median preoptic nucleus in the control of oxytocin secretion and water and sodium intake. de Lucca Junior W; Franci CR Brain Res; 2004 Jul; 1014(1-2):236-43. PubMed ID: 15213008 [TBL] [Abstract][Full Text] [Related]
7. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Noda M Exp Physiol; 2007 May; 92(3):513-22. PubMed ID: 17350991 [TBL] [Abstract][Full Text] [Related]
8. Intrinsic properties of the sodium sensor neurons in the rat median preoptic nucleus. Voisin AN; Drolet G; Mouginot D Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(8):R834-42. PubMed ID: 22874426 [TBL] [Abstract][Full Text] [Related]
9. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents. Kolaj M; Coderre E; Renaud LP Neuroscience; 2008 Sep; 155(4):1212-20. PubMed ID: 18674591 [TBL] [Abstract][Full Text] [Related]
10. Lateral hypothalamus lesions influences water and salt intake, and sodium and urine excretion, and arterial blood pressure induced by L-NAME and FK 409 injections into median preoptic nucleus in conscious rats. Abrão Saad W; Guarda IF; Camargo LA; Garcia G; Gutierrez LI; Abrão Saad W; Simões S; Saad Guarda R Life Sci; 2004 Jun; 75(6):685-97. PubMed ID: 15172178 [TBL] [Abstract][Full Text] [Related]
11. Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Gao J; Wu LJ; Xu L; Xu TL Brain Res; 2004 Aug; 1017(1-2):197-207. PubMed ID: 15261115 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of acid-sensing ion channels in cultured neurons of rat inferior colliculus. Zhang M; Gong N; Lu YG; Jia NL; Xu TL; Chen L Neuroscience; 2008 Jun; 154(2):461-72. PubMed ID: 18456416 [TBL] [Abstract][Full Text] [Related]
13. Challenged sodium balance and expression of angiotensin type 1A receptor mRNA in the hypothalamus of Wistar and Dahl rat strains. Mouginot D; Laforest S; Drolet G Regul Pept; 2007 Jul; 142(1-2):44-51. PubMed ID: 17350697 [TBL] [Abstract][Full Text] [Related]
14. Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. Perez MF; White FJ; Hu XT J Neurophysiol; 2006 Nov; 96(5):2217-28. PubMed ID: 16885524 [TBL] [Abstract][Full Text] [Related]
15. Differences in electrophysiological properties of angiotensinergic pathways from the subfornical organ to the median preoptic nucleus between normotensive Wistar-Kyoto and spontaneously hypertensive rats. Tanaka J; Yamamuro Y; Saito H; Matsuda M; Nomura M Exp Neurol; 1995 Aug; 134(2):192-8. PubMed ID: 7556538 [TBL] [Abstract][Full Text] [Related]
16. Tetrodotoxin-sensitive and -resistant Na+ channel currents in subsets of small sensory neurons of rats. Wu ZZ; Pan HL Brain Res; 2004 Dec; 1029(2):251-8. PubMed ID: 15542080 [TBL] [Abstract][Full Text] [Related]
17. The sodium "leak" has finally been plugged. Snutch TP; Monteil A Neuron; 2007 May; 54(4):505-7. PubMed ID: 17521564 [TBL] [Abstract][Full Text] [Related]
18. Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. Grimes JA; Djamgoz MB J Cell Physiol; 1998 Apr; 175(1):50-8. PubMed ID: 9491780 [TBL] [Abstract][Full Text] [Related]
19. Angiotensin II induces calcium-dependent rhythmic activity in a subpopulation of rat hypothalamic median preoptic nucleus neurons. Spanswick D; Renaud LP J Neurophysiol; 2005 Apr; 93(4):1970-6. PubMed ID: 15774710 [TBL] [Abstract][Full Text] [Related]
20. The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain. Noda M Neuroscientist; 2006 Feb; 12(1):80-91. PubMed ID: 16394195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]