BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21084739)

  • 1. Degradative-release as a function of drug structure from LDI-glycerol polyurethanes.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Biomed Mater Eng; 2010; 20(5):269-81. PubMed ID: 21084739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles.
    Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ
    Acta Biomater; 2008 Sep; 4(5):1263-74. PubMed ID: 18440884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous drug release at different rates from biodegradable polyurethane foams.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of ionic ligands accelerates drug release from LDI-glycerol polyurethanes.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Acta Biomater; 2010 Jan; 6(1):144-53. PubMed ID: 19524075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LDI-glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas.
    Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ
    Acta Biomater; 2008 Jul; 4(4):852-62. PubMed ID: 18440882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable and temperature-responsive polyurethanes for adriamycin delivery.
    Sun X; Gao H; Wu G; Wang Y; Fan Y; Ma J
    Int J Pharm; 2011 Jun; 412(1-2):52-8. PubMed ID: 21511019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character.
    Abraham GA; Marcos-Fernández A; Román JS
    J Biomed Mater Res A; 2006 Mar; 76(4):729-36. PubMed ID: 16317720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.
    Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO
    Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite.
    Da Silva GR; Ayres E; Orefice RL; Moura SA; Cara DC; Cunha Ada S
    J Drug Target; 2009 Jun; 17(5):374-83. PubMed ID: 19555266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and drug release of biocompatible/biodegradable non-toxic poly(urethane urea)s based on poly(epsilon-caprolactone)s and lysine-based diisocyanate.
    Reddy TT; Kano A; Maruyama A; Takahara A
    J Biomater Sci Polym Ed; 2010; 21(11):1483-502. PubMed ID: 20534197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering.
    Zhang J; Doll BA; Beckman EJ; Hollinger JO
    J Biomed Mater Res A; 2003 Nov; 67(2):389-400. PubMed ID: 14566779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an aliphatic polyurethane as a microsphere matrix for sustained theophylline delivery.
    Subhaga CS; Ravi KG; Sunny MC; Jayakrishnan A
    J Microencapsul; 1995; 12(6):617-25. PubMed ID: 8558384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes.
    Zhang C; Zhao K; Hu T; Cui X; Brown N; Boland T
    J Control Release; 2008 Oct; 131(2):128-36. PubMed ID: 18703098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes.
    Santerre JP; Labow RS; Adams GA
    J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2,4- and 2,6-toluene diisocyanates, 1,5-naphthalene diisocyanate, 4,4-methylenediphenyl diisocyanate and polymethylene polyphenyl isocyanate and flexible and rigid polyurethane foams.
    IARC Monogr Eval Carcinog Risk Chem Hum; 1979 Feb; 19():303-40. PubMed ID: 220177
    [No Abstract]   [Full Text] [Related]  

  • 20. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release.
    Simmons A; Padsalgikar AD; Ferris LM; Poole-Warren LA
    Biomaterials; 2008 Jul; 29(20):2987-95. PubMed ID: 18436300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.