These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 21084773)
1. Recent insights into iron homeostasis and their application in graminaceous crops. Kobayashi T; Nakanishi H; Nishizawa NK Proc Jpn Acad Ser B Phys Biol Sci; 2010; 86(9):900-13. PubMed ID: 21084773 [TBL] [Abstract][Full Text] [Related]
2. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice. Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636 [TBL] [Abstract][Full Text] [Related]
3. Iron uptake, translocation, and regulation in higher plants. Kobayashi T; Nishizawa NK Annu Rev Plant Biol; 2012; 63():131-52. PubMed ID: 22404471 [TBL] [Abstract][Full Text] [Related]
4. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Ogo Y; Itai RN; Nakanishi H; Kobayashi T; Takahashi M; Mori S; Nishizawa NK Plant J; 2007 Aug; 51(3):366-77. PubMed ID: 17559517 [TBL] [Abstract][Full Text] [Related]
5. Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. Kobayashi T; Suzuki M; Inoue H; Itai RN; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Exp Bot; 2005 May; 56(415):1305-16. PubMed ID: 15781441 [TBL] [Abstract][Full Text] [Related]
6. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Zhang X; Zhang D; Sun W; Wang T Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100819 [TBL] [Abstract][Full Text] [Related]
7. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647 [TBL] [Abstract][Full Text] [Related]
8. Iron deficiency responses in rice roots. Kobayashi T; Nakanishi Itai R; Nishizawa NK Rice (N Y); 2014 Dec; 7(1):27. PubMed ID: 26224556 [TBL] [Abstract][Full Text] [Related]
9. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments. Murata Y; Itoh Y; Iwashita T; Namba K PLoS One; 2015; 10(3):e0120227. PubMed ID: 25781941 [TBL] [Abstract][Full Text] [Related]
10. IRONing out stress problems in crops: a homeostatic perspective. Bandyopadhyay T; Prasad M Physiol Plant; 2021 Apr; 171(4):559-577. PubMed ID: 32770754 [TBL] [Abstract][Full Text] [Related]
11. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Takahashi M; Nakanishi H; Kawasaki S; Nishizawa NK; Mori S Nat Biotechnol; 2001 May; 19(5):466-9. PubMed ID: 11329018 [TBL] [Abstract][Full Text] [Related]
12. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Inoue H; Kobayashi T; Nozoye T; Takahashi M; Kakei Y; Suzuki K; Nakazono M; Nakanishi H; Mori S; Nishizawa NK J Biol Chem; 2009 Feb; 284(6):3470-9. PubMed ID: 19049971 [TBL] [Abstract][Full Text] [Related]
13. Iron homeostasis in plants - a brief overview. Connorton JM; Balk J; Rodríguez-Celma J Metallomics; 2017 Jul; 9(7):813-823. PubMed ID: 28686269 [TBL] [Abstract][Full Text] [Related]
14. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. White PJ; Broadley MR New Phytol; 2009; 182(1):49-84. PubMed ID: 19192191 [TBL] [Abstract][Full Text] [Related]
15. Iron nutrition, biomass production, and plant product quality. Briat JF; Dubos C; Gaymard F Trends Plant Sci; 2015 Jan; 20(1):33-40. PubMed ID: 25153038 [TBL] [Abstract][Full Text] [Related]
16. Iron uptake, translocation and regulation in rice. Guo MX; Zheng L; Zhao XS Yi Chuan; 2017 May; 39(5):388-395. PubMed ID: 28487271 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the Nicotianamine Exporter ENA1 in Rice. Nozoye T; von Wirén N; Sato Y; Higashiyama T; Nakanishi H; Nishizawa NK Front Plant Sci; 2019; 10():502. PubMed ID: 31114596 [TBL] [Abstract][Full Text] [Related]
18. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. Chao ZF; Chao DY New Phytol; 2022 Dec; 236(5):1655-1660. PubMed ID: 36093736 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Bashir K; Inoue H; Nagasaka S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Biol Chem; 2006 Oct; 281(43):32395-402. PubMed ID: 16926158 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]