These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 21085100)

  • 1. Label-free in situ imaging of lignification in plant cell walls.
    Schmidt M; Perera P; Schwartzberg AM; Adams PD; Schuck PJ
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21085100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa.
    Schmidt M; Schwartzberg AM; Perera PN; Weber-Bargioni A; Carroll A; Sarkar P; Bosneaga E; Urban JJ; Song J; Balakshin MY; Capanema EA; Auer M; Adams PD; Chiang VL; Schuck PJ
    Planta; 2009 Aug; 230(3):589-97. PubMed ID: 19526248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20228730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
    Zeng Y; Zhao S; Yang S; Ding SY
    Curr Opin Biotechnol; 2014 Jun; 27():38-45. PubMed ID: 24863895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational fingerprint mapping reveals spatial distribution of functional groups of lignin in plant cell wall.
    Liu B; Wang P; Kim JI; Zhang D; Xia Y; Chapple C; Cheng JX
    Anal Chem; 2015 Sep; 87(18):9436-42. PubMed ID: 26291845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical imaging of poplar wood cell walls by confocal Raman microscopy.
    Gierlinger N; Schwanninger M
    Plant Physiol; 2006 Apr; 140(4):1246-54. PubMed ID: 16489138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Raman Imaging and Multivariate Analysis to Visualize Lignin, Cellulose, and Hemicellulose in the Plant Cell Wall.
    Zhang X; Chen S; Xu F
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed for deconstruction--poplar trees altered in cell wall lignification improve the efficacy of bioethanol production.
    Mansfield SD; Kang KY; Chapple C
    New Phytol; 2012 Apr; 194(1):91-101. PubMed ID: 22239166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blind image analysis for the compositional and structural characterization of plant cell walls.
    Perera PN; Schmidt M; Schuck PJ; Adams PD
    Anal Chim Acta; 2011 Sep; 702(2):172-7. PubMed ID: 21839194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redesigning plant cell walls for the biomass-based bioeconomy.
    Carpita NC; McCann MC
    J Biol Chem; 2020 Oct; 295(44):15144-15157. PubMed ID: 32868456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of the Raman spectroscopy to the study of plant cell walls].
    Ma J; Ma JF; Zhang X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1239-43. PubMed ID: 23905327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana).
    Agarwal UP
    Planta; 2006 Oct; 224(5):1141-53. PubMed ID: 16761135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the potential of lignocellulosic biomass through plant science.
    Marriott PE; Gómez LD; McQueen-Mason SJ
    New Phytol; 2016 Mar; 209(4):1366-81. PubMed ID: 26443261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic manipulation of lignocellulosic biomass for bioenergy.
    Wang P; Dudareva N; Morgan JA; Chapple C
    Curr Opin Chem Biol; 2015 Dec; 29():32-9. PubMed ID: 26342806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free visualization of fruit lignification: Raman molecular imaging of loquat lignified cells.
    Zhu N; Wu D; Chen K
    Plant Methods; 2018; 14():58. PubMed ID: 30008794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical imaging of lignocellulosic biomass by CARS microscopy.
    Pohling C; Brackmann C; Duarte A; Buckup T; Enejder A; Motzkus M
    J Biophotonics; 2014 Jan; 7(1-2):126-34. PubMed ID: 23836627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels.
    Achyuthan KE; Achyuthan AM; Adams PD; Dirk SM; Harper JC; Simmons BA; Singh AK
    Molecules; 2010 Nov; 15(12):8641-88. PubMed ID: 21116223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.