BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1060 related articles for article (PubMed ID: 21085121)

  • 1. Quantitative reactivity profiling predicts functional cysteines in proteomes.
    Weerapana E; Wang C; Simon GM; Richter F; Khare S; Dillon MB; Bachovchin DA; Mowen K; Baker D; Cravatt BF
    Nature; 2010 Dec; 468(7325):790-5. PubMed ID: 21085121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-Based Prediction of Cysteine Reactivity Using Machine Learning.
    Wang H; Chen X; Li C; Liu Y; Yang F; Wang C
    Biochemistry; 2018 Jan; 57(4):451-460. PubMed ID: 29072073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of interactors for yeast protein arginine methyltransferase Hmt1 reveals novel substrate and insights into additional biological roles.
    Jackson CA; Yadav N; Min S; Li J; Milliman EJ; Qu J; Chen YC; Yu MC
    Proteomics; 2012 Nov; 12(22):3304-14. PubMed ID: 22997150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum.
    Bechtel TJ; Li C; Kisty EA; Maurais AJ; Weerapana E
    ACS Chem Biol; 2020 Feb; 15(2):543-553. PubMed ID: 31899610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays.
    Low JK; Im H; Erce MA; Hart-Smith G; Snyder MP; Wilkins MR
    Proteomics; 2016 Feb; 16(3):465-76. PubMed ID: 26572822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria.
    Deng X; Weerapana E; Ulanovskaya O; Sun F; Liang H; Ji Q; Ye Y; Fu Y; Zhou L; Li J; Zhang H; Wang C; Alvarez S; Hicks LM; Lan L; Wu M; Cravatt BF; He C
    Cell Host Microbe; 2013 Mar; 13(3):358-70. PubMed ID: 23498960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes.
    Fu L; Liu K; Sun M; Tian C; Sun R; Morales Betanzos C; Tallman KA; Porter NA; Yang Y; Guo D; Liebler DC; Yang J
    Mol Cell Proteomics; 2017 Oct; 16(10):1815-1828. PubMed ID: 28827280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
    Marino SM; Li Y; Fomenko DE; Agisheva N; Cerny RL; Gladyshev VN
    Biochemistry; 2010 Sep; 49(35):7709-21. PubMed ID: 20698499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast.
    Baxter SM; Rosenblum JS; Knutson S; Nelson MR; Montimurro JS; Di Gennaro JA; Speir JA; Burbaum JJ; Fetrow JS
    Mol Cell Proteomics; 2004 Mar; 3(3):209-25. PubMed ID: 14645503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine.
    King MY; Redman KL
    Biochemistry; 2002 Sep; 41(37):11218-25. PubMed ID: 12220187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein cysteine modifications: (1) medical chemistry for proteomics.
    Nagahara N; Matsumura T; Okamoto R; Kajihara Y
    Curr Med Chem; 2009; 16(33):4419-44. PubMed ID: 19835564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs.
    Beckmann BM; Horos R; Fischer B; Castello A; Eichelbaum K; Alleaume AM; Schwarzl T; Curk T; Foehr S; Huber W; Krijgsveld J; Hentze MW
    Nat Commun; 2015 Dec; 6():10127. PubMed ID: 26632259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM.
    Lee CF; Paull TT; Person MD
    J Proteome Res; 2013 Oct; 12(10):4302-15. PubMed ID: 23964713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism. II. Role of glutaredoxin Grx5.
    Alves R; Herrero E; Sorribas A
    Proteins; 2004 Nov; 57(3):481-92. PubMed ID: 15382238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae.
    Lipson RS; Webb KJ; Clarke SG
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1658-62. PubMed ID: 20035717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry.
    Bak DW; Weerapana E
    Methods Mol Biol; 2019; 1967():211-227. PubMed ID: 31069773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
    Fu L; Li Z; Liu K; Tian C; He J; He J; He F; Xu P; Yang J
    Nat Protoc; 2020 Sep; 15(9):2891-2919. PubMed ID: 32690958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the proteome of Saccharomyces cerevisiae for methylarginine.
    Low JK; Hart-Smith G; Erce MA; Wilkins MR
    J Proteome Res; 2013 Sep; 12(9):3884-99. PubMed ID: 23865587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.