These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21085165)

  • 1. Chemical biology: Synthetic metabolism goes green.
    Noel JP
    Nature; 2010 Nov; 468(7322):380-1. PubMed ID: 21085165
    [No Abstract]   [Full Text] [Related]  

  • 2. Integrating carbon-halogen bond formation into medicinal plant metabolism.
    Runguphan W; Qu X; O'Connor SE
    Nature; 2010 Nov; 468(7322):461-4. PubMed ID: 21048708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation with tryptophan halogenase genes leads to the production of new chlorinated alkaloid metabolites by a medicinal plant.
    van Pée KH
    Chembiochem; 2011 Mar; 12(5):681-3. PubMed ID: 21344584
    [No Abstract]   [Full Text] [Related]  

  • 4. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
    Kidd T; Easson ML; Qu Y; De Luca V
    Phytochemistry; 2019 Mar; 159():119-126. PubMed ID: 30611871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of a Short-Chain Dehydrogenase from Catharanthus roseus that Produces a New Monoterpene Indole Alkaloid.
    Stavrinides AK; Tatsis EC; Dang TT; Caputi L; Stevenson CEM; Lawson DM; Schneider B; O'Connor SE
    Chembiochem; 2018 May; 19(9):940-948. PubMed ID: 29424954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and biology of monoterpene indole alkaloid biosynthesis.
    O'Connor SE; Maresh JJ
    Nat Prod Rep; 2006 Aug; 23(4):532-47. PubMed ID: 16874388
    [No Abstract]   [Full Text] [Related]  

  • 7. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.
    O'Connor SE
    Methods Enzymol; 2012; 515():189-206. PubMed ID: 22999175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan decarboxylase from transformed roots of Catharanthus roseus.
    Islas-Flores I; Moreno-Valenzuela O; Minero-García Y; Loyola-Vargas VM; Miranda-Ham Mde L
    Mol Biotechnol; 2002 Jul; 21(3):211-6. PubMed ID: 12102544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots.
    Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI
    J Biotechnol; 2006 Mar; 122(1):28-38. PubMed ID: 16188339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytolocalization of tryptophan decarboxylase in Catharanthus roseus hairy roots.
    Moreno-Valenzuela OA; Minero-García Y; Brito-Argáez L; Carbajal-Mora E; Echeverría O; Vázquez-Nin G; Loyola-Vargas VM
    Mol Biotechnol; 2003 Jan; 23(1):11-8. PubMed ID: 12611265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures.
    Vázquez-Flota F; De Luca V; Carrillo-Pech M; Canto-Flick A; de Lourdes Miranda-Ham M
    Mol Biotechnol; 2002 Sep; 22(1):1-8. PubMed ID: 12353909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
    Glenn WS; Nims E; O'Connor SE
    J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus.
    Sharma A; Verma P; Mathur A; Mathur AK
    Protoplasma; 2018 Sep; 255(5):1281-1294. PubMed ID: 29508069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase.
    Peebles CA; Hong SB; Gibson SI; Shanks JV; San KY
    Biotechnol Bioeng; 2006 Feb; 93(3):534-40. PubMed ID: 16240438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Patra B; Pattanaik S; Schluttenhofer C; Yuan L
    New Phytol; 2018 Mar; 217(4):1566-1581. PubMed ID: 29178476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reprogramming of periwinkle plant culture.
    Runguphan W; O'Connor SE
    Nat Chem Biol; 2009 Mar; 5(3):151-3. PubMed ID: 19151732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells.
    Papon N; Bremer J; Vansiri A; Andreu F; Rideau M; Crèche J
    Planta Med; 2005 Jun; 71(6):572-4. PubMed ID: 15971133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aza-tryptamine substrates in monoterpene indole alkaloid biosynthesis.
    Lee HY; Yerkes N; O'Connor SE
    Chem Biol; 2009 Dec; 16(12):1225-9. PubMed ID: 20064432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus.
    Whitmer S; van der Heijden R; Verpoorte R
    J Biotechnol; 2002 Jun; 96(2):193-203. PubMed ID: 12039535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral Sequence Reconstruction for Exploring Alkaloid Evolution.
    Lichman BR
    Methods Mol Biol; 2022; 2505():165-179. PubMed ID: 35732944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.