These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21085215)

  • 1. National Institute of Standards and Technology high-accuracy cryogenic radiometer.
    Gentile TR; Houston JM; Hardis JE; Cromer CL; Parr AC
    Appl Opt; 1996 Mar; 35(7):1056-68. PubMed ID: 21085215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer.
    Gentile TR; Houston JM; Cromer CL
    Appl Opt; 1996 Aug; 35(22):4392-403. PubMed ID: 21102852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements.
    Datla RU; Stock K; Parr AC; Hoyt CC; Miller PJ; Foukal PV
    Appl Opt; 1992 Dec; 31(34):7219-25. PubMed ID: 20802586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard.
    Fedchak JA; Carter AC; Datla R
    J Res Natl Inst Stand Technol; 2006; 111(4):325-34. PubMed ID: 27274936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute calibration of an ultraviolet spectrometer using a stabilized laser and a cryogenic cavity radiometer.
    Jauniskis L; Foukal P; Kochling H
    Appl Opt; 1992 Sep; 31(27):5838-43. PubMed ID: 20733776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ACR II: improved absolute cryogenic radiometer for low background infrared calibrations.
    Carter AC; Lorentz SR; Jung TM; Datla RU
    Appl Opt; 2005 Feb; 44(6):871-5. PubMed ID: 15751676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube electrical-substitution cryogenic radiometer: initial results.
    Tomlin NA; Lehman JH
    Opt Lett; 2013 Jan; 38(2):175-7. PubMed ID: 23454953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature calorimeter for x-ray free-electron lasers.
    Tanaka T; Kato M; Saito N; Tono K; Yabashi M; Ishikawa T
    Rev Sci Instrum; 2015 Sep; 86(9):093104. PubMed ID: 26429426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical high-power nonlinearity comparison between the National Institute of Standards and Technology and the National Metrology Institute of Japan at 1480 nm.
    Vayshenker I; Yang S; Amemiya K; Mukai S; Zama T
    Appl Opt; 2010 Jan; 49(1):32-6. PubMed ID: 20062487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges.
    Rabus H; Persch V; Ulm G
    Appl Opt; 1997 Aug; 36(22):5421-40. PubMed ID: 18259363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of a pyroelectric detector at 10.6 microm with the National Institute of Standards and Technology high-accuracy cryogenic radiometer.
    Gentile TR; Houston JM; Eppeldauer G; Migdall AL; Cromer CL
    Appl Opt; 1997 Jun; 36(16):3614-21. PubMed ID: 18253383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a fiber-coupled picowatt cryogenic radiometer.
    Tomlin NA; Lehman JH; Nam S
    Opt Lett; 2012 Jun; 37(12):2346-8. PubMed ID: 22739903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryogenic Blackbody Calibrations at the National Institute of Standards and Technology Low Background Infrared Calibration Facility.
    Datla RU; Croarkin MC; Parr AC
    J Res Natl Inst Stand Technol; 1994; 99(1):77-87. PubMed ID: 37404363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%.
    Fox NP; Martin JE
    Appl Opt; 1990 Nov; 29(31):4686-93. PubMed ID: 20577452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Near-Infrared Spectral Responsivity Scale.
    Shaw PS; Larason TC; Gupta R; Brown SW; Lykke KR
    J Res Natl Inst Stand Technol; 2000; 105(5):689-700. PubMed ID: 27551631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developments for a New Spectral Irradiance Scale at the National Institute of Standards and Technology.
    Tsai BK
    J Res Natl Inst Stand Technol; 1997; 102(5):551-558. PubMed ID: 27805142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-accuracy room temperature planar absolute radiometer based on vertically aligned carbon nanotubes.
    Vaskuri AK; Stephens MS; Tomlin NA; Spidell MT; Yung CS; Walowitz AJ; Straatsma C; Harber D; Lehman JH
    Opt Express; 2021 Jul; 29(14):22533-22552. PubMed ID: 34266014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Electrical Substitution Methods and Detectors for Absolute Optical Power Measurements.
    Woods SI; Neira JE; Proctor JE; Rice JP; Tomlin NA; White MG; Stephens MS; Lehman JH
    Metrologia; 2022; 59(4):. PubMed ID: 36733421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared spectral responsivity scale realization and validations.
    Eppeldauer GP; Podobedov VB
    Appl Opt; 2012 Sep; 51(25):6003-8. PubMed ID: 22945145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature laser power standard using a microfabricated, electrical substitution bolometer.
    Stephens M; Yung CS; Tomlin NA; Vaskuri A; Ryger I; Spidell M; White MG; Jenkins T; Landry J; Sereke T; Lehman JH
    Rev Sci Instrum; 2021 Feb; 92(2):025107. PubMed ID: 33648050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.