These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21085240)

  • 1. Experimental free-space optical network for massively parallel computers.
    Araki S; Kajita M; Kasahara K; Kubota K; Kurihara K; Redmond I; Schenfeld E; Suzaki T
    Appl Opt; 1996 Mar; 35(8):1269-81. PubMed ID: 21085240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices.
    McCormick FB; Tooley FA; Cloonan TJ; Brubaker JL; Lentine AL; Morrison RL; Hinterlong SJ; Herron MJ; Walker SL; Sasian JM
    Appl Opt; 1992 Sep; 31(26):5431-46. PubMed ID: 20733728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable optical hypercube-based interconnection network for massively parallel computing.
    Louri A; Sung H
    Appl Opt; 1994 Nov; 33(32):7588-98. PubMed ID: 20962964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing massively parallel optical computers: a case study.
    Guha A; Derstine MW
    Appl Opt; 1990 May; 29(14):2187-200. PubMed ID: 20563147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picosecond multistage interconnection network architecture for optical computing.
    Guizani M
    Appl Opt; 1994 Mar; 33(8):1587-99. PubMed ID: 20862185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain-size considerations for optoelectronic multistage interconnection networks.
    Krishnamoorthy AV; Marchand PJ; Kiamilev FE; Esener SC
    Appl Opt; 1992 Sep; 31(26):5480-507. PubMed ID: 20733733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study of a scalable optical interconnection network for massively parallel processing systems.
    Louri A; Furlonge S
    Appl Opt; 1996 Mar; 35(8):1296-308. PubMed ID: 21085242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems.
    Kajita M; Kasahara K; Kim TJ; Neilson DT; Ogura I; Redmond I; Schenfeld E
    Appl Opt; 1998 Jun; 37(17):3746-55. PubMed ID: 18273346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 256 × 256 Turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators.
    Sakano T; Kimura K; Noguchi K; Naito N
    Appl Opt; 1995 May; 34(14):2581-9. PubMed ID: 21052396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed free-space interconnect based on optical ring topology: experimental demonstration.
    Wang JM; Kanterakis E; Katz A; Zhang Y; Li Y; Murray N
    Appl Opt; 1994 Sep; 33(26):6181-7. PubMed ID: 20936035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated OpenFlow-GMPLS control plane: an overlay model for software defined packet over optical networks.
    Azodolmolky S; Nejabati R; Escalona E; Jayakumar R; Efstathiou N; Simeonidou D
    Opt Express; 2011 Dec; 19(26):B421-8. PubMed ID: 22274052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical interconnections for massively parallel architectures.
    Guha A; Bristow J; Sullivan C; Husain A
    Appl Opt; 1990 Mar; 29(8):1077-93. PubMed ID: 20562964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical binary de Bruijn networks for massively parallel computing: design methodology and feasibility study.
    Louri A; Sung H
    Appl Opt; 1995 Oct; 34(29):6714-22. PubMed ID: 21060526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.
    Miao W; Luo J; Di Lucente S; Dorren H; Calabretta N
    Opt Express; 2014 Feb; 22(3):2465-72. PubMed ID: 24663538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-routing crossbar packet switch employing free-space optics for chip-to-chip Interconnections.
    Cloonan TJ; Lentine AL
    Appl Opt; 1991 Sep; 30(26):3721-33. PubMed ID: 20706450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of optical packet and circuit integrated ring network testbed.
    Furukawa H; Harai H; Miyazawa T; Shinada S; Kawasaki W; Wada N
    Opt Express; 2011 Dec; 19(26):B242-50. PubMed ID: 22274025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4x4 optical packet switching of asynchronous burst optical packets with a prototype, 4x4 label processing and switching sub-system.
    Urata R; Nakahara T; Takenouchi H; Segawa T; Ishikawa H; Ohki A; Sugiyama H; Nishihara S; Takahashi R
    Opt Express; 2010 Jul; 18(15):15283-8. PubMed ID: 20720905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical perfect-shuffle-exchange interconnection network using a liquid-crystal spatial light switch.
    Cao M; Luo F; Li H; Wang S
    Appl Opt; 1992 Nov; 31(32):6817-9. PubMed ID: 20733914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophotonic computer networks with strictly nonblocking and self-routing functions.
    Kawai S; Kurita H
    Appl Opt; 1996 Mar; 35(8):1309-16. PubMed ID: 21085243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays.
    Yamaguchi M; Yamamoto T; Yukimatsu K; Matsuo S; Amano C; Nakano Y; Kurokawa T
    Appl Opt; 1994 Mar; 33(8):1337-44. PubMed ID: 20862159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.