These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21085267)

  • 21. Transmission as an input boundary value for an analytical solution of a single-scatter lidar equation.
    Kunz GJ
    Appl Opt; 1996 Jun; 35(18):3255-60. PubMed ID: 21102710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles.
    Kovalev VA; Hao WM; Wold C
    Appl Opt; 2007 Dec; 46(36):8627-34. PubMed ID: 18091973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Errors in the retrieval of thin-cloud optical parameters obtained with a two-boundary algorithm.
    Del Guasta M
    Appl Opt; 1998 Aug; 37(24):5522-40. PubMed ID: 18286037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios.
    Kovalev VA
    Appl Opt; 1993 Oct; 32(30):6053-65. PubMed ID: 20856432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical properties of aerosol and cloud particles measured by a single-line-extracted pure rotational Raman lidar.
    Peng L; Yi F; Liu F; Yin Z; He Y
    Opt Express; 2021 Jul; 29(14):21947-21964. PubMed ID: 34265970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of multiple scattering on depolarization measurements with spaceborne lidars.
    Reichardt S; Reichardt J
    Appl Opt; 2003 Jun; 42(18):3620-33. PubMed ID: 12833968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive filter solution for processing lidar returns: optical parameter estimation.
    Rocadenbosch F; Vázquez G; Comerón A
    Appl Opt; 1998 Oct; 37(30):7019-34. PubMed ID: 18301520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere.
    Kovalev VA; Moosmüller H
    Appl Opt; 1994 Sep; 33(27):6499-507. PubMed ID: 20941187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence.
    Campbell JR; Lolli S; Lewis JR; Gu Y; Welton EJ
    J Appl Meteorol Climatol; 2016 Aug; 55(8):1667-1679. PubMed ID: 32818026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An extended lidar-based cirrus cloud retrieval scheme: first application over an Arctic site.
    Nakoudi K; Stachlewska IS; Ritter C
    Opt Express; 2021 Mar; 29(6):8553-8580. PubMed ID: 33820301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.
    Liu Z; Voelger P; Sugimoto N
    Appl Opt; 2000 Jun; 39(18):3120-37. PubMed ID: 18345243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retrieval of cloud optical parameters from space-based backscatter lidar data.
    Balin YS; Samoilova SV; Krekova MM; Winker DM
    Appl Opt; 1999 Oct; 38(30):6365-73. PubMed ID: 18324166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depolarization of polarized light caused by high altitude clouds. 1: Depolarization of lidar induced by cirrus.
    Sun YY; Li ZP; Bösenberg J
    Appl Opt; 1989 Sep; 28(17):3625-32. PubMed ID: 20555746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-wavelength lidar inversion algorithm for a two-component atmosphere.
    Ackermann J
    Appl Opt; 1997 Jul; 36(21):5134-43. PubMed ID: 18259326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.
    Marais WJ; Holz RE; Hu YH; Kuehn RE; Eloranta EE; Willett RM
    Appl Opt; 2016 Oct; 55(29):8316-8334. PubMed ID: 27828081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.
    Cuesta J; Flamant PH
    Appl Opt; 2010 Apr; 49(12):2232-43. PubMed ID: 20411002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloud extinction profile measurements by lidar using Klett's inversion method.
    Carnuth W; Reiter R
    Appl Opt; 1986 Sep; 25(17):2899. PubMed ID: 18235549
    [No Abstract]   [Full Text] [Related]  

  • 38. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.
    Noel V; Chepfer H; Ledanois G; Delaval A; Flamant PH
    Appl Opt; 2002 Jul; 41(21):4245-57. PubMed ID: 12148751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing cirrus optical depth retrievals over the ocean from collocated CALIPSO and AMSR-E observations.
    Tang Q; Hu Y; Li W; Huang J; Stamnes K
    Appl Opt; 2018 Sep; 57(26):7472-7481. PubMed ID: 30461813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.
    Fraczek M; Behrendt A; Schmitt N
    Appl Opt; 2012 Jan; 51(2):148-66. PubMed ID: 22270512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.